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Different models for monitoring wind farm power output are considered. Data mining and evolutionary
computation are integrated for building the models for prediction and monitoring. Different models
using wind speed as input to predict the total power output of a wind farm are compared and analyzed.
The k-nearest neighbor model, combined with the principal component analysis approach, outperforms
other models studied in this research. However, this model performs poorly when the conditions of the
wind farm are abnormal. The latter implies that the original data contains many noisy points that need to
be filtered. An evolutionary computation algorithm is used to build a nonlinear parametric model to
monitor the wind farm performance. This model filters the outliers according to the residual approach
and control charts. The k-nearest neighbor model produces good performance for the wind farm oper-
ating in normal conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The generation of wind energy on an industrial scale is relatively
new. It is then natural that the performance of wind power farms
has not been adequately studied. One of the weakest points in wind
power generation is the low predictive accuracy of the energy
output. Like industrial corporations managed by enterprise-wide
systems, a software solution for prediction of wind farm perfor-
mance (including the amount of energy produced) is needed. The
envisioned wind farm performance prediction models should be
able to predict the amount of energy produced on different time
scales, e.g., 10 min, 1 h, a day, etc. Such models could transform
a wind farm into a wind power plant.

Researchers have applied different methodologies in studying
wind farms. Cameron and Michael [3] combined the fuzzy set and
neural network approaches in an adaptive-neurons-fuzzy inference
system to forecast a wind time series. Landberg [6] builts a model to
predict the power produced by a wind farm using the data from the
weather prediction model (HIRLAM) and the local weather model
(WASP). Li et al. [13] compared regression and neural network (NN)
models in order to estimate a turbine’s power curve. They reported
that the NN model outperformed the regression model. Goh et al.
[11] proposed a neural network architecture, the complex-valued
pipelined recurrent neural network (CPRNN) using a complex value
(combined wind speed and direction into one complex value) as
siak).

All rights reserved.
input, for predicting the turbine output. Santoso and Le [14] focused
on modeling fixed-speed wind turbines. They modeled the
component blocks of a turbine (for aerodynamic, mechanical, and
electrical components), and aggregated them into models of a sin-
gle turbine and a wind farm. Lange and Focken [28] presented
various models for short-term wind power prediction, including
physics-based, fuzzy, and neuro-fuzzy models. Barbounis et al. [29]
constructed a local recurrent neural network model for long-term
wind speed and power forecasting based on the meteorological
data. Hourly forecasts for up to 72 h ahead were produced for
a wind park.

Wind energy has become one of the most important sources of
energy. Building accurate models for predicting power output and
health monitoring of wind farms is needed by this new industry.
Developing such models is challenging, as a large number of pa-
rameters are involved. The high dimensional and stochastic nature
of a wind farm environment calls for new modeling approaches.
The developments in data mining (DM) and evolutionary com-
putation (EC) offer promising approaches to model wind farms.
Numerous applications of data mining in manufacturing, market-
ing, medical informatics and the energy industry have proven to
be effective in support of decision making [2,5,7,8,24]. Successful
applications of evolutionary computation have also been reported
in many other domains [1,4,9,10,12,15].

In this paper, a variety of different approaches, including data
mining, evolutionary computation, principal component analysis
(PCA), residual approach, and control charts, have been used to
build prediction models and characterize power curves of a wind
farm by a nonlinear parametric model. The models are built using
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historical data collected by SCADA (Supervisory Control and Data
Acquisition) systems at a wind farm.
Fig. 1. A typical power curve of a single turbine.
2. Models for computing power output of a wind farm

2.1. Data description

The data used in this research was generated at a wind farm
with about 100 turbines. The data was collected by a SCADA system
installed at each wind turbine. Each SCADA system collects data on
more than 120 parameters. Though the data is sampled at a high
frequency, e.g., 2 s, the data is averaged and stored at 10-min in-
tervals (referred to as 10-min data). The data used in this research
was collected over a period of one month at all turbines of the wind
farm. The data included one file for each turbine containing over
100 parameters of intervals of an average of 10 min from different
sensors and monitoring channels. Examples of parameters included
wind speed, wind direction, outside temperature, and turbine
control parameters, and were all time stamped. In this research, the
wind speed measured at each wind turbine and the corresponding
power output were selected for analysis. This was largely dictated
by the interests of the wind industry, and more importantly,
a complex data-release process controlled by the industry.
2.2. Data pre-processing

The collected data from a wind farm is voluminous, and it
usually contains errors caused by sensors and malfunctions of the
data collection system. Such errors manifest themselves in missing
values, out-of-range values, and so on. For example, the SCADA
recorded wind speed should be in the range [0, 20 m/s], and the
power should be in the range [0, 1600 kW]. After filtering the raw
data, the final data set for 89 turbines was produced, and thus the
wind farm considered in this paper included 89 turbines. The speed
of 89 turbines and the total power output of 89 turbines as the
output recorded at 10-min intervals resulted in 4347 instances
(data set 1 in Table 1). Data set 1 was divided into two data sets,
data set 2 and data set 3. Data set 2 contains 3476 data points, and it
was used to develop a prediction model with data mining algo-
rithms. Data set 3 is comprised of 871 data points, and it was used
to test the prediction performance of the model learned from data
set 2.

A wind turbine is expected to produce a certain amount of
energy for a given wind speed. The relationship between the wind
speed and its power output is expressed as a power curve, which
has a logistic function shape. In the research reported in this paper,
power curves of 89 wind turbines have been analyzed. A typical
power curve for a wind turbine is shown in Fig. 1. For a variety of
reasons discussed later in the paper, it is clearly seen that the power
curve is not an ideal logistic function. In fact, all regions outside of
the logistic curve represent power losses. This abnormality of
power curves is one of the central factors that motivated the re-
search reported in this paper.

To present a global view of the wind farm, the power curve for
the entire wind farm (total power of 89 turbines), included in data
set 1 of Table 1, is shown in Fig. 2.
Table 1
The data set description

Data
set

Start time stamp End time stamp Description

1 1/1/07 12:00 AM 1/31/07 11:50 PM Total data set; 4347 observations
2 1/1/07 12:00 AM 1/25/07 6:20 PM Training data set; 3476 observations
3 1/25/07 6:30 PM 1/31/07 11:50 PM Test data set; 871 observations
The overall shape of the power curve in Fig. 2 is similar to that of
the individual turbine in Fig. 1.

2.3. Extracting models from wind farm data

In this paper, five different data mining algorithms are used to
build power prediction models for a wind farm based on data set 2.
These algorithms include the multi-layer perceptron algorithm
(MLP) [21,19], REP tree [19], M5P tree [20,19], bagging (boot-
strapping aggregating) tree [23,22,19], and the k-nearest neighbor
(k-NN) algorithm [19]. MLP is an algorithm with multi-layer
perceptron structure. It is usually used in nonlinear regression and
classification modeling. REP tree builds a classification or a re-
gression tree using information gain or variance and prunes it using
reduced-error pruning with back-fitting. M5P tree is an algorithm
for generating trees and rules. Bagging involves aggregation of
multiple classifiers or regression trees, and leads to the reduction of
misclassification error. The k-NN algorithm predicts values based
on training examples that are similar to the case considered. It can
be used for classification and regression. To test the accuracy of
these algorithms, models trained from data set 2 were tested on
data set 3. Table 2 shows the prediction accuracy of the models
generated by the five algorithms, where Std denotes standard
deviation.

Fig. 3 shows the first 200 observed and k-NN predicted power
values for data set 3. It can be seen from Table 2 and Fig. 3 that for
k¼ 100 the k-NN algorithm outperforms the other four algorithms.
The MLP algorithm produces the lowest accuracy prediction, and
the bagging tree and the M5P tree algorithms perform quite well.

In this research, k-NN is used to predict wind farm power based
on the wind speed. The basic steps of the k-NN algorithm are as
follows [19]:
Fig. 2. Cumulative power curve of the wind farm (data set 1 of Table 1).



Table 2
Prediction accuracy of models generated by five different algorithms

Algorithm Mean absolute
error (kW)

Absolute error
Std (kW)

Mean relative
error (%)

Relative error
Std (%)

MLP 4748.0384 6226.7351 49.0306 223.9045
M5P tree 3518.2017 4711.1737 18.7217 47.23016
REP tree 4888.7874 5575.3074 19.9904 32.89106
k-NN (k¼ 100) 2872.2923 2949.7033 10.5013 30.74105
Bagging tree 3199.8823 3303.4856 16.1681 37.53675

Table 3
Eigenvalues of the correlation matrix and the related statistics

Value
number

Eigenvalue % Total
variance

Cumulative
Eigenvalue

Cumulative
%

1 85.1795 95.7071 85.1795 95.7073
2 0.5450 0.6124 85.7245 96.3197
3 0.3690 0.4146 86.0935 96.7344
4 0.2052 0.2306 86.2988 96.9650
5 0.1844 0.2072 86.4833 97.1723
6 0.1523 0.1711 86.6356 97.3434
7 0.1381 0.1552 86.7738 97.4987
8 0.1319 0.1482 86.9058 97.6469
9 0.1132 0.1272 87.0190 97.7742
10 0.0995 0.1118 87.1185 97.8860

A. Kusiak et al. / Renewable Energy 34 (2009) 583–590 585
1. Represent each instance in a multi-dimensional space.
2. Divide the entire data set into training and test data sets.
3. Given a test instance, a distance metric is computed between

the test instance and all training instance, then the k-nearest
neighbors are selected from the training data.

4. Compute the average distance of the k-nearest neighbors. This
distance becomes the predicted value for the test instance.

Different distance metrics are used, including Euclidean, Man-
hattan, and so on. The parameter k is significant in k-NN algorithm
and its best value depends on the data structure and conditions. In
this research, the Euclidean distance metric is selected and k is set
to 100 based on the model’s prediction accuracy.
2.4. Principal component analysis

To obtain insights into the data, the correlation among all 89
inputs (wind speeds from 89 individual turbines) has been
computed. The results show that the wind speeds are not highly
correlated. To reduce the input dimensionality, the principal com-
ponent analysis (PCA) [16] was chosen to transform the 10-min
wind speed data measured at 89 turbines into a low dimension
input for predictive modeling. The k-nearest neighbor (k-NN)
algorithm provided good quality results in a similar project and
therefore it has been selected for further investigation.

The PCA expresses the variance–covariance structure of a set of
variables by a few linear combinations. The basic steps of the PCA
are as follows [16]:

1. Compute a correlation matrix.
2. Compute the eigenvectors and eigenvalues of the correlation

matrix.
3. Select the components to form an eigenvector.
4. Derive the new data comprised of the principal component of

the original data.

Table 3 presents the first 10 eigenvalues of the correlation ma-
trix and the related statistics. Based on the eigenvalue statistics, the
first principal component explains 95.7% of the total variance, and
Fig. 3. Predicted and observed power for the first 200 data points of data set 3.
therefore a subset (in particular, one) of eigenvalues is selected.
Thus the dimensionality of the data stream (89 inputs) is reduced.
The principal components, which are uncorrelated linear combi-
nations of the 89 original wind speeds, should form the new
coordinate and input for the k-NN model discussed in Section 2.3.

The wind speed of data set 2 and data set 3 in Table 1 are both
transformed into lower dimensional data sets. The models built
from the transformed data set 2 are tested using the transformed
data set 3. The data in Table 4 illustrates the prediction accuracy of
the k-NN model for different numbers of principal components,
P¼ 1, P¼ 2, P¼ 5, and P¼ 10. The k-NN model for different numbers
of components P is denoted as k-NN-P1 through k-NN-P10. The
parameter k in each k-NN model has been optimized for prediction
accuracy, and the values of k providing the best accuracy is shown
in Table 4.

The data in Table 4 shows that the best performance of the k-NN
model has been produced for k¼ 250 and the number of principal
components P¼ 1 (this model is labeled as k-NN-P1), and the
prediction accuracy worsens as the number of P increases. Com-
pared with the k-NN (k¼ 100) model in Section 2.3, the dimension
of the input of k-NN-P1 (k¼ 250) has been reduced from 89 to 1,
and the prediction accuracy has been significantly enhanced:

� The mean relative error (%) was reduced from 10.5013 to
8.69855.
� The corresponding Std (%) improved from 30.74105 to 21.3092.
� The mean absolute error (kW) was enhanced from 2872.2923

to 2255.2954.
� The corresponding Std (kW) was reduced from 2949.7033 to

2174.7299.

The power predicted by the k-NN-P1 (k¼ 250) model and the
observed power of data set 3 in Table 1 are compared in Fig. 4. The
predicted power curve appears to closely follow the measured
power.

The relative error (%) produced by the k-NN-P1 (k¼ 250) model
is shown in Fig. 3.

The error chart of Fig. 5 indicates numerous points with low
prediction accuracy. The absolute error of some predictions is larger
than 350%, and for some other points the error is between 30 and
100%. However, among the 871 prediction points (the entire data
Table 4
Prediction accuracy of k-NN model with different numbers of principal
components P

Algorithm Mean absolute
error (kW)

Absolute error
Std (kW)

Mean relative
error (%)

Relative error
Std (%)

k-NN-P1 (k¼ 250) 2255.2954 2174.7299 8.69855 21.3092
k-NN-P2 (k¼ 40) 2814.9793 2854.9392 12.5694 61.2684
k-NN-P5 (k¼ 20) 3545.3267 3612.7334 15.6346 62.6743
k-NN-P10 (k¼ 5) 4612.3748 4790.2389 20.8753 75.1256



Fig. 4. Power predicted by the k-NN-P1 (k¼ 250) model and the observed power.

Table 5
Statistics for all outliers produced by the k-NN-P1 (k¼ 250) model

All outliers (70) Mean Standard
deviation

Minimum Maximum

Average wind speed (m/s) 2.3868 0.8439 0.4266 4.5873
Predicted power (kW) 1097.4237 2340.9837 �316.0187 11085.0537
Observed power (kW) 830.6759 1969.0140 �604.6623 9399.7344
Relative error (%) 60.1507 51.8928 15.0991 350.1841
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set 3 in Table 1), only 70 predictions produced an error larger than
15%. These points represents only 8% of the data set 3 in Table 1, and
hence these points with a large prediction relative error are con-
sidered here as outliers. Analysis of the outlier data should lead to
solutions improving the accuracy of the k-NN-P1 model.

3. Analysis of outlier data

In this section the 70 points with large relative error (larger than
15%) predicted by the k-NN-P1 (k¼ 250) model are analyzed.

According to the manual of the wind turbine on the farm, the
cut-off wind speed of a single turbine is 3.5 m/s. The data in Table 5
indicates that the average wind speed for all outliers is around
2.4 m/s (below the turbine’s cut-off wind speed), and the corre-
sponding average power of 70 outlier data produced is approxi-
mately 1010 kW. Therefore, generally, if the average wind speed is
below the cut-off point, the turbines are working in abnormal
conditions, which then produce the outliers for the k-NN-P1 model.
Low wind speed is not the only reason for outliers. In fact, some
outliers in Table 5 correspond to the wind speed higher than 4 m/s
as indicated by its standard deviation and the maximum.

Fig. 6 illustrates the observed power curve as the function of the
principal component derived from the 89 wind speeds from data
set 1 (data set 2 plus data set 3) of Table 1. It is obvious from the
chart that the outliers do exist as Figs. 1 and 2, making the power
curve irregular and affecting the accuracy of the k-NN-P1 model.

The operating experience of wind farms and the statistical re-
sults discussed point to three main sources of outliers:

1. Wind speed. The low output power is due to the wind speed
around the cut-in point (the cut-in speed is set at 2.4 m/s) or
the wind speed around the cut-out point (the cut-out speed is
set at 20 m/s). A turbine with wind speed below the cut-in
point operates abnormally because insufficient wind energy
Fig. 5. Relative error (%) of the k-NN-P1 (k¼ 250) model.
cannot power the turbine. On the other hand, wind speed
above the cut-out point causes the turbine to vibrate. To avoid
the negative impact of high wind speed on the turbine’s life-
cycle, the control system shuts down its operation.

2. Environmental issues other than the wind speed may produce
power curve outliers. Blades affected by dirt, bugs, and ice may
impact power curves of individual turbines and produce out-
liers reflected in the wind farm power curve.

3. Wind farm shut-down due to maintenance or energy curtail-
ment. Scheduled or unscheduled maintenance operations as
well as energy curtailment due to diminished transmission
capacity may lead to disrupted operations of individual tur-
bines or the entire wind farm.

4. Control system issues. The conditions of the wind could be in
the normal range, yet the power produced could be below the
values indicated by the power curve. A possible reason is that
the control parameters may be not appropriate for the wind
regime. Such power anomalies are clearly visible, for example,
the points not following the logistic function shape of the
power curves in Figs. 1 and 2. The specific reason may be
attributed to the malfunction of the sensors, pitch control
malfunctions, blade pitch angle errors, blade damage, control
program problems, incorrect controller settings, constrained
operations, and so on.
4. Nonlinear parametric modeling of wind farm power curves

The quality of the power generated by a wind farm is charac-
terized by its power curve (see Fig. 2). Thus far the existing wind
energy literature and practices assume that the power curve is
static. This research shows that the power curve is not static, and it
should be constructed as parametric. A parametric power curve
adjusts to the current operational conditions by modifying its pa-
rameters, resulting in an enhanced performance of a wind turbine.
One way of using the parametric power curve is to monitor the
power of a wind turbine (or the entire wind farm) and detect outlier
data. To construct a parametric power curve, the outliers from data
set 2 and data set 3 of Table 1 will be detected and filtered out by
the approach discussed in Section 5.1.
Fig. 6. Observed power curve as the function of the principal component derived from
89 wind speeds.



Fig. 7. Power curve of the observed power and the power predicted by the k-NN-P1
(k¼ 250) model.
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4.1. Learning parametric model from training data

Based on the analysis of the historical data (data set 1), the wind
farm power curve is approximated by logistic function [25] (1)

y ¼ f ðx; qÞ ¼ a
1þme�x=s

1þ ne�x=s ; q ¼ ða; m; n; sÞ (1)

where x is the principal component of 89 wind speeds (the pre-
dictor in k-NN-P1 model), y is the power of the wind farm, and
q¼ (a, m, n, s) is a 4-dimension vector parameter of logistic function
that determines the shape of the power curve.

Assume there exists a training data set composed of N pairs of
data points [y(i), x(i)], i¼ 1,.,N characterizing the power curve
when the wind farm operates under normal conditions. LSM (least
squares method) [26] is commonly used to model numeric ob-
served data by adjusting the parameters of the model in order to
best fit the data. The residual in regression analysis is defined as
the difference between the predicted value of the model and the
observed value. The best fit model is characterized by the sum of
the squared residual over the training data set that has the least
value.

To best estimate q of the parametric model (1) from the training
data set, LSM is used in this research to best fit the power curve, and
thus the sum of squared residuals of LSM over the training data set
is used as the cost function (2) to be minimized:

Sðx;yÞ ¼
XN

i¼1

"
a

1þme�xðiÞ=s

1þ ne�xðiÞ=s � yðiÞ
#2

(2)

Therefore, the estimate of vector parameter bq can be calculated
from Eq. (3)

bq ¼ argmin
a;m;n;s

Sðx;yÞðxð1Þ; yð1Þ; .; xðNÞ; yðNÞja;m;n; sÞ (3)

Solving Eq. (3) and building the nonlinear parametric model of the
power curve for a wind farm (or a wind turbine) poses several
challenges:

1. As the original data in Table 1 contains outliers data (see Fig. 6),
the original observed data does not represent the normal
power curve of the wind farm. Under such circumstances, using
the least squares method (LSM) can lead to a biased estimation
of the vector parameter bq. Finding suitable training data which
characterizes the normal power curve is then necessary.

2. The function (1) is nonlinear and the vector parameter q¼ (a,
m, n, s) contains four variables. An algorithm is needed to
search for the best estimate of the vector parameter in a 4-
dimensional space.

To obtain a training data representing a desirable and normal
power curve, the k-NN-P1 model (k¼ 250) is applied to the data set
2 of Table 1. Fig. 7 shows the power observed and predicted by the
k-NN-P1 (k¼ 250) model of data set 2 (Table 1). The predicted
power curve in Fig. 7 is far less scattered than the observed power
curve, and it contains no abnormal points. The points represented
by the k-NN-P1 (k¼ 250) predicted power curve are suitable as
a training data set for building a nonlinear parametric model.

The new training data for the parametric model includes the
principal component derived from 89 wind speeds used as x(i) in
function (2) and the power predicted by the k-NN-P1 (k¼ 250)
model used as y(i) in function (2). The new training data includes
3476 pairs of data points [yk-NN(i), x(i)] (obtained from data set 2 of
Table 1), and therefore the problem of finding a training data
characterizing the normal power curve of a wind farm has been
solved.
The basic procedure for building a parametric model for wind
farm power is as follows:

1. Transform the original observed wind speed of 89 turbines into
the principal component wind speed (PCWS) using the PCA
approach.

2. Use the k-NN model to predict the desirable (normal) power
based on the PCWS values.

3. The training data set characterizing the normal performance of
the wind farm includes PCWS values and power predicted by
the k-NN model with these PCWS values. Note that the training
data set contains a small number of outliers.

4. Learn the parametric model from the training data [yk-NN(i),
x(i)] by the evolutionary strategy (ES) algorithm (see Section
4.2).
4.2. Learning parametric model by evolutionary
strategy (ES) algorithm

To minimize the cost function (2) and estimate the value of
parameter q, an evolutionary strategy (ES) approach is used. There
are two basic reasons for using the ES algorithm [1], scalability and
computational efficiency. ES algorithms are suitable for solving
large-scale problems and at the same time are efficient.

The basic steps of the evolutionary strategy algorithm are [1]:

1. Initialize m individuals (candidate vector parameter) to form
the initial parent population.

2. Repeat until the stopping criteria are satisfied.

2.1. Select from the parent population and recombine two

parents l times to generate l children.
2.2. Mutate l children.
2.3. Select the best m individuals from the children and parent

pool based on the fitness function values.
2.4. Use these selected m individuals as parents for the next

generation.

3. Apply one of the stopping criteria, e.g., the allowable number of

generations.

In this research, the cost function (2) serves as the fitness
function of the ES algorithm. The ES algorithm calls for initial values
of the vector parameter q. Several heuristic experiments have been
performed to generate the initial parametric model of the power
curve. The result of one of these experiments is shown in Fig. 8. It is
clearly seen that the heuristically-generated parametric power
curve and the one generated from the new training data [yk-NN(i),
x(i)] differ; however, their shapes are similar. The ES algorithm
determines parameters that make the parametric power curve fit



Fig. 8. Power curve (PC) obtained from the parametric model with heuristic param-
eters and the training data set.

Fig. 10. Power curve (PC) generated from the parametric model and the training data
set.
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the training data. The cost function (2) based on the LSM is used as
the fitness function of the ES algorithm. In summary, the nonlinear
parametric model is built based on the LSM concept and solved by
the ES algorithm.

Fig. 9 shows that the fitness function converges to the minimum
value after 400 generations. To clearly illustrate the convergence,
Fig. 9 begins with the fifth generation of the ES algorithm.

The bq computed by the ES algorithm is bq ¼ ð128545:6123;
0:7106; 320:8248; 13:1239Þ. Fig. 10 shows that the parametric
power curve and the power curve based on training data generated
from the k-NN-P1 (k¼ 250) model are essentially identical.

The parametric model fits well the training data [yk-NN(i), x(i)].
The power in the training data is predicted by the k-NN model, and
it is different from the observed power of data set 2 in Table 1.
Fig. 11 illustrates that the parametric power curve learned from the
training data [yk-NN(i), x(i)] fits well the observed power curve of the
wind farm. It contains no abnormal or outlier data shown in Figs. 2
and 6. The power curve of the wind farm in normal conditions can
be characterized by the parametric model, and thus it can be used
as a reference power curve to monitor the power generating pro-
cess of a wind farm (for details see Section 5.1).

5. Filtering outliers by residual approach and control charts

A formal approach to detect outliers in data is needed. The high
quality data (without noise and outliers) can be used to build
models of high prediction accuracy when the wind farm operates
under normal conditions.

5.1. Forming control charts to filter outliers

The power curve of the parametric model built in Section 4.2
characterizes the wind farm in normal conditions, and therefore it
Fig. 9. Convergence process of the fitness function of Eq. (2).
can be used as a true (dynamic) reference power curve. The residual
(control theory) and control chart (quality control) approaches are
used to analyze residuals of the parametric model and the observed
power. The residual 3 is expressed as [17,27]:

3 ¼ by � y; (4)

where by ¼ f ðx; qÞ ¼ að1þme�x=s=1þ ne�x=sÞ,

bq ¼ ð128545:6123;0:7106;320:8248;13:1239Þ

where y is the observed power, bq is the estimate of the parameters
of the model computed by the ES algorithm (Section 4.2), f(x, q) is
the parametric model built in Section 4.2 and by is the reference
power of the parametric model, 3 is the residual of the parametric
and the observed power, x is the principal component of 89 wind
speeds used by the k-NN-P1 (k¼ 250) model (Section 2.4).

The control chart approach [17,18,27] allows the residuals and
their variations to be monitored, thus detecting the outlier and
abnormal data indicating the abnormal conditions of the wind
farm. A data set comprised of 2000 observations was considered.
This training data set (2000 observations) without outliers was
selected from the data set 2 in Table 1 to form a control chart. The
training data set can be represented as, y_TrainSet ¼ ½yðiÞ; byðiÞ�,
i¼ 1,.,N, where N¼ 2000.

Using the training data set (N¼ 2000), the residual 3 for each
point is computed, as well as the mean and standard deviation of 3.
The mean residual mTrain is 1=N

PN
i¼1ðbyðiÞ � yðiÞÞ, and the standard

deviation sTrain is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðN � 1Þ

PN
i¼1ððbyðiÞ � yðiÞÞ � mTrainÞ2

q
.

For the testing data set, expressed as y_TestSet ¼ ½yðiÞ; byðiÞ�,
i¼ 1,.,n. The testing data set includes n consecutive data points
drawn according to the time sequence from the entire data set
(4347 instances in data set 1 from Table 1).

Similarly, the mean residual mTest and the standard deviation
sTest of the test data set are expressed as:
Fig. 11. Power curve generated from the observed and the parametric model.



Fig. 12. Power curve after filtering out the outlier and abnormal data.
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mTest ¼
1
n

Xn

i¼1

�byðiÞ � yðiÞ
�
; sTest

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

��byðiÞ � yðiÞ
�
� mTest

�2

vuut :

Once mTrain and sTrain are known, the upper and lower control limits
are computed and used to detect the abnormal or outlier data.
Based on model (5) [17], control limits are derived as:

UCL1 ¼ mTrain þ 4
sTrainffiffiffi

n
p

Center Line1 ¼ mTrain

LCL1 ¼ mTrain � 4
sTrainffiffiffi

n
p

(5)

where n is the number of points in y_TestSet, and the constant 4,
other than the widely used constant 3, in model (5) is used to make
the control chart less sensitive to the data variability. Such a chart
reduces the risk of mistaking normal points for abnormal ones and
filtering out many normal points in error. In this paper, n was
chosen to be 2 to make the control chart less sensitive to the data
variability. If mTest is above UCL1 or below LCL1, the data points in
y_TestSet are considered as abnormal or outlier points.

Similarly, the control limits for s2
Test are calculated from Eq. (6)

[17]:

UCL2 ¼
s2

Train
n� 1

� c2
a=2;n�1

Center Line2 ¼ s2
Train

LCL2 ¼ 0

(6)

where n is the number of points in y_TestSet, c2
a=2;n�1 denotes the

right a/2 percentage points of the chi-square distribution, n� 1 is
the degree of freedom of the chi-square distribution. If s2

Test is
above UCL2, the data in y_TestSet is considered as abnormal or
outlier points. LCL2 is set to 0, which indicates that the measure-
ment of the sensor is correct, and the wind farm status is normal,
Table 6
The description of reduced data sets

Reduced
data set

Start time
stamp

End time
stamp

Description

1 1/1/07 12:00 AM 1/31/07 11:50 PM Total data set;
3460 observations

2 1/1/07 12:00 AM 1/25/07 6:20 PM Training data set;
2589 observations

3 1/25/07 6:30 PM 1/31/07 11:50 PM Test data set;
871 observations
and therefore there is little chance that the test points are abnormal
or outliers.

The computed values of the upper and lower control limits are
UCL1¼8274.58, LCL1¼�11554.38, UCL2¼ 81525027.82, LCL2¼ 0.
Using these values, the outliers and abnormal data in the entire set
(data set 2 plus data set 3 in Table 1) could be detected by the
control charts. Both the training and test data sets with abnormal or
outlier data filtered out describe normal operations of the wind
farm.

5.2. The k-NN-P model based on the filtered data

Control charts can be used to remove outlier data. However, in
practice, if the wind farm is producing less than a certain per-
centage of its capacity (here 10,000 kW), the corresponding SCADA
data points are considered as outliers. Basically, there are two main
types of the outlier data, the one detected by the control charts and
the data associated with the low power production (here less than
10,000 kW per wind farm). The power curve for the filtered data
with the approach discussed here is shown in Fig. 12.

A filtered data set was created from the data set 1 of Table 1, with
the filtered out points including:

� 156 outlier points detected by the control chart
� 731 points with observed power less than 10,000 kW

The outlier data points detected by the control chart are usually
due to the control, environmental, maintenance, or power curtail-
ment issues. Other outliers are predominantly due to the low wind
speed. The reduced data set is divided into test and training data
sets. Table 6 shows the characteristics of the reduced data set. For
comparison with the k-NN-P1 (k¼ 250) model in Section 2.4, the
test data contains the same number of data points; however, the
training data set has been reduced from 3476 to 2589 points.

Table 7 compares the relative error (%) of prediction of two
different models, the k-NN-P1 (k¼ 250) model (the model built in
Section 2.3), and k-NN-P1-F (k¼ 70) model, which is the model
built on the filtered data (F stands for filtered). It is clearly seen in
Table 7 that model k-NN-P1-F (k¼ 70) has reduced the mean
standard deviation and the maximum relative error. The model
k-NN-P1-R (k¼ 70) is thus more robust, accurate, and stable. It
makes accurate predictions when the wind farm is working in
normal conditions. In addition, for smaller values k the computa-
tional effort is reduced.

6. Conclusion

Models for computing power produced by a wind farm under
normal operating conditions were developed. In particular,
a nonlinear parametric model of a power curve was constructed. To
develop these models algorithms from four different domains were
used, namely: data mining, evolutionary computation, principal
component analysis, and statistical process control. The focus of the
paper was on studying a wind farm operating in normal conditions.
The normal conditions exclude states where the wind speed is too
low or high, turbines undergo maintenance or are affected by en-
vironmental issues, and low power output due to control issues.
The data sets available for the study were not sufficient for in-depth
investigation of abnormal states. In the studied period, the wind
farm was operating predominantly in normal conditions. A non-
linear parametric model of the power curve of the wind farm was
constructed with an evolutionary strategy algorithm. One appli-
cation of the parametric model was to monitor online performance
of a wind farm. This parametric power curve served as a reference
to monitor the generated power. Another application was to im-
prove the quality of the data by filtering abnormal data. The filtered



Table 7
The comparison of the k-NN-P1 model before and after data filtering

Relative error (%) k-NN-P1 (k¼ 250) k-NN-P1-F (k¼ 70)

Mean 8.6985 3.5763
Standard deviation 21.3092 2.5464
Maximum 350.1842 14.6894
Minimum 0.0001 0.0055
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data enhanced accuracy, stability, and robustness of the prediction
model. In addition, the computational time was reduced.

The ultimate goal of the research initiated in this paper was to
derive accurate predictive models for a wind farm working in
normal conditions. Once additional data, e.g., wind direction, air
density, temperature and so on, becomes available such models are
likely to be developed. Although the k-NN-P1 model was used in
this paper, other data mining algorithms could enhance prediction
accuracy. The parametric power curve derived in this paper should
have a great impact as a performance monitoring tool. This para-
metric model can become a basis of improvements in the control,
monitoring, and optimization of wind farm performance.
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