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Abstract—Recent years have witnessed a great deal of
attention in tracking news memes over the web, modeling
shifts in the ebb and flow of their popularity. One of the
most important features of news memes is that they seldom
occur repeatedly; instead, they tend to shift to different but
similar memes. In this work, we consider patterns in research
memes, which differ significantly from news memes and have
received very little attention. One significant difference between
research memes and news memes lies in that research memes
have cyclic development, motivating the need for models of
cycles of research memes. Furthermore, these cycles may reveal
important patterns of evolving research, shedding lights on how
research progresses. In this paper, we formulate the modeling
of the cycles of research memes, and propose solutions to the
problem of identifying cycles and discovering patterns among
these cycles. Experiments on two different domain applications
indicate that our model does find meaningful patterns and our
algorithms for pattern discovery are efficient for large scale
data analysis.

Keywords-Research memes, frequent patterns, MeSH hierar-
chy, shortest paths, topic mining, topic evolution

I. INTRODUCTION

‘Memes’ refer to cultural units that carry ideas, behavior

or style, spreading from person to person. A great deal of

work has been done on tracking topics, ideas and memes

across the web [9], [10], [11]. Tracking the evolution of

memes is an important problem, since it allows us to

understand the competition among news and blog items each

day, and how certain stories persist while others fade quickly.
The modeling and tracking of memes have been studied

in many works, with an emphasis on modeling bursts,

tracking trends, and detecting cycles. Much less attention,

however, has been aimed at studying memes in scientific

and engineering research. News memes and research memes

differ in the following aspects:

1) Evolving speed: News memes are characterized by

sharp, burst-like increases in volume, and rapid de-

creases. By contrast, the volume of research memes

usually increases much more slowly and more drawn

out. As a result, news memes usually spread and

fade over time scales on the order of days. Research

memes, however, can spread over time scales spanning

from months to years, and even many years:

2) Evolving style: News memes shift constantly, and

seldom shift back — news topics change very fast.

The same meme does not recur for clear reasons.

Research memes on the contrary do recur, due to how

research is conducted. For example, it is argued in

http://www.questioning.org/module/cycle.html that many challenge

problems require multiple investigations of the same

topic prior to consolidation, acquiring enough insight

and evidence to move to the next stage.

3) Evolving driver: While news focuses on the present,

reporting what is happening with emphasis on timely

updates to attract public attention, research focuses

more on the past, reporting what has been done with

emphasis on innovative ideas and significant findings.

As a result, research memes are mostly driven by

dedicated researchers (or research groups) with a cer-

tain degree of continuity; this in turn makes long-term

modeling of research memes possible.

In this work, we are specifically interested in discovering

patterns that govern shifts, away and then back, of attention

in a research meme. We focus on this specific type of pattern

for the following two reasons: (1) Research memes are more

‘cyclical’ than news memes, and we observe recurrences of

the same meme. Thus the cyclical pattern models a special

characteristic of research memes. (2) As shown in the work

of [7], the cyclical patterns potentially permit forecasting,

and thus may help us to predict future occurrences of memes.

Therefore, we believe that understanding the evolution of

research memes is an important problem.
Since occurrences of research memes lie in different years,

we build a graph in which each (meme, occurrence) is

considered as a node. Since one meme can have multiple

occurrences, we may have multiple nodes for the same

meme. The two nodes for the meme are naturally considered

the start and end of a cycle. We then want to identify

a path between the two nodes, charactering the shifts, or

evolution of the memes. Based on the assumption that re-

search interests tend to shift to related topics, we then search

for a shortest path between the two nodes in the graph,

maximizing the likelihood that the path indeed characterizes

the true meme shifts of the cycles.
We consider two different applications: (1) memes in

computer science research and (2) memes in biomedical re-

search. We propose different models for the two applications

according to their properties, including different definitions
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of meme occurrence and different distance functions. We

also propose an efficient method to identify the shortest path

in the graph. Finally we propose an efficient frequent pattern

mining algorithm for the two applications. The patterns

obtained in our experiments reveal different aspects of meme

shifts in each application. For computer science memes, the

patterns show that the similarity of memes tends to remain

stable during shifts along the cycles. For biomedical memes,

the patterns show that the memes tend to shift to more

general memes first and then to more specific ones. Then this

generality remains stable during the shifts along the cycles.

II. METHODS

Given a set of publications, our model consists of the

following steps:

• Identify research meme occurrences

• Identify meme cycles

• Mine frequent patterns for meme shifts in the cycles

• Analyze frequent patterns

A. Research Meme Occurrence

To identify the cycles of research memes, we first need

to identify occurrences of these memes. Since we have two

different applications, the occurrences of topics are defined

differently.

1) Occurrence for Computer Science Memes: we con-

sider each named session of a conference as a topic, or

meme. Because these sessions occur in a conference at most

once every year, we say the meme occurs in a year if the

session appears in the conference in that year.

2) Occurrence for Biomedical Memes: Biomedical topics

are known to be organized in a hierarchy called MeSH.

Each MeSH term is then considered as a meme. In this

work, we consider the occurrence of MeSH topics as points

in time at which the popularity of the MeSH topics shows

significant increase. It is well known [2] that topic popularity

can be quantified with the frequency of the topic in related

literature. Adapting methods like those in [8], we propose to

formalize popularity of topics in hierarchies with traditional

trend indicators from technical market analysis, such as

EMA, MACD and MACD histogram. According to the topic

dynamic model, a burst period is defined as the continuous

time period over which the MACD histogram is positive.

The occurrence time of the topic, or meme, is then defined

as the occurrence time of the burst. The readers can refer to

[8] for the details of the topic dynamic model.

B. Research Meme Distance

Before we introduce our method to identify cycles of

research memes, we need to first define similarity and

distance of memes. In this work, we consider two types of

meme distance for the two different applications.

1) Distance for Computer Science Memes: Since here we

consider each conference session as a meme, the distance of

two memes, or two sessions, is naturally determined as one

minus the similarity of the two sessions. The similarity of

the two sessions is defined as their Jaccard similarity:

sim(A, B) =
|T (A) ∩ T (B)|

|T (A)|+ |T (B)| − |T (A) ∩ T (B)| (1)

where A, B are sessions, T (A) is the set of terms for session

A and |T (A)| is the number of terms in A. Therefore,

the distance of two memes is defined as dist(A, B) =
1− sim(A, B), which is within the range [0, 1].

2) Distance for Biomedical Memes: Here we consider

MeSH terms as memes that are organized into a hierarchy.

In this hierarchy, the distance of memes is naturally defined

as the minimum topological distance of the two memes in

the hierarchy. (The MeSH hierarchy permits multiple parents

for a given topic, so there can be multiple paths between two

memes.)

C. Search for Research Meme Cycles

In order to search for cycles of research memes, we

first construct a graph G = (V,E) where V is the set

of nodes for each occurrence of each meme. E is the set

of edges and eai,bj = dist(ai, bj), where ai is a node in

the graph corresponding to the i-th occurrence of meme a
and dist(ai, bj) is the distance of the two corresponding

memes a and b. Notice that since the occurrence of memes

is temporal, the graph is directed. A meme occurring at year

t can only have outgoing edges to memes occurring at year

t + 1, and it has outgoing edges to all such topics.

Once the graph is built, we can search for research meme

cycles in the graph by looking for shortest paths between

the two recurring memes. The shortest path then represents

a cycle of research memes. This is based on the assumption

that attention focused on research topics tends to shift to

related topics rather than un-related topics. For example, it

is reasonable that research on ‘graph mining’ would shift

to ‘social networks’ since the two topics are quite related.

On the contrary, it is unlikely that research on ‘social

networks’ would shift to ‘embedded systems’ since they are

not clearly related. Therefore, the shortest path between two

occurrences of a meme maximizes the likelihood of the shift.

Indeed, the shortest path is not necessarily the only

possible shift between the two occurrences of a topic.

There might be emerging topics during the process that

culminates in a shift to the later occurrence of the topic.

The shortest path shift, specifically models the process that

the research attention shifts away from a topic to related

topics and then shift back, for reasons such as that the

research on related topics leads to new insights on the

original topic. In this work, we focus on modeling this

process with several possible patterns. This leads us to

propose our first computational problem:
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Problem 1: Given a DAG (directed acyclic graph) G =
(V,E), a set of f node pairs (n11, n12) (n21, n22),. . .,
(nf1, nf2), find shortest paths between each pair of nodes

(ni1, ni2), which is a pair of occurrences of the i-th topic,

for 1 ≤ i ≤ f .

Searching for shortest path in a dag is a well-studied

problem [3] and probably the most famous algorithm is Di-

jkstra algorithm [4]. The complexity of Dijkstra’s algorithm

is O(n2) where n is the number of nodes in the graph.

In our work, n is usually a very large number since we

consider each occurrence of each meme as a node and one

meme can occur multiple times. For example, the MeSH

hierarchy contains around 50,000 terms, but the graph built

from MeSH terms consists of millions of nodes. Thus the

complexity could be very high if we load the whole graph

into memory. However, the complexity can be improved

significantly since one node has outgoing edges only to the

nodes occurring at the next time unit. Thus to search for

the shortest path between two nodes, given their occurrence

times, we can easily determine the set of nodes and edges

that need to be considered (and loaded into memory). The

subgraph is usually much smaller than the whole graph. Thus

searching on the subgraph is much faster.

D. Mining Patterns of Research Meme Shifts
To our knowledge there is no previous work on shifts

in patterns of research memes, and thus no benchmarks or

databases of known patterns to validate our work against.

Therefore, we have developed a set of experiments, hoping

to discover meaningful patterns.
1) Patterns for Computer Science Memes: Since the

memes, or sessions, for conferences contain a set of terms,

we want to observe the evolution of the terms involved in

the shifting memes. For each session at year i, we consider

its relationship with sessions in year i-1. For each year i,
we define the following three types of terms, with T (i)
indicating the set of terms contained by the meme at year i
in the cycle:

1) Disappearing term: t ∈ T (i− 1) and t �∈ T (i)
2) Emerging term: t �∈ T (i− 1) and t ∈ T (i)
3) Stable term: t ∈ T (i− 1) and t ∈ T (i)

Notice that the frequency of a term can change during

these shifts, if they are involved in either disappearnace or

emergence.
We want to observe the evolution of each type of term,

and see which types of term play the most important roles

in the shift of the research memes. Therefore, at each year

i, we compute the weight for each type of terms as follows:

weighti =
∑ |Ti|

∑3
j=1 |Tj |

for 1 ≤ i ≤ 3

Here weighti is the weight for the i-th type of terms, Ti is

the set of terms of the i-th type, and |Ti| is the number of

i-th type terms.

Then during the shift, if the weight increases, we mark

the meme as 1. If the weight decreases, we mark the meme

as −1. If the weight does not change, we mark the meme as

0. Notice by saying the weight does not change, we indeed

mean the change of the weight is very small. In this work,

we say if the weight change is less than 0.05, the weight

is stable. Given the average term number of a session as

32, a weight change of 0.05 means a difference of one or

two terms, which is indeed a very small change. Thus for

each shortest path, we obtain three sequences of alphabet

size {1,−1, 0}, one for each type of terms. Then for the

sequences of each type of term, we mine frequent patterns

among them. Intuitively, we want to tell how the evolution

of the terms drives the shifts of research memes in cycles.

In this work, we are interested in patterns that occur at

the same position across all the sequences with frequency

greater than a threshold (we call them position-specifc
frequent patterns). For illustration purposes, we show an

example in Figure 1.
Pos:   1    2     3     4    5     6 

Seq 1:  1    -1    1    1     0     1 

Seq 2:  1    -1    0    0     0    -1 

Seq 3:  0    -1    1    -1    0    -1  

Figure 1. Example for frequent patterns.

Unlike the traditional frequent pattern mining problem,

here the sequence of patterns is temporal. Therefore,

occurrences of a pattern at different positions are considered

as different occurrences and thus not accumulated for the

pattern. For example, in Figure 1, the pattern (1,−1) occurs

at position 1 twice in all three sequences, and at position

3 once in all sequences. If the threshold is two, we say

the pattern (1,−1) is frequent only at position 1 but not at

position 3. Our goal is to identify all such frequent patterns.

We next propose our second computational problem:

Problem 2: Given a set of n sequences (s1, s2, . . . , sn),
find all position-specific frequent patterns p’s such that
support(p,i)

n ≥ t, where support(p, i) indicates the support

of pattern p at position i and t is the frequency threshold.

Many methods exist to mine frequent patterns [6]. In

a given sequence, frequent pattern is defined as patterns

with frequency greater than a pre-defined threshold, where

frequency is the ratio of support of the pattern (number

of occurrences in the sequence) and the total number of

possible patterns. It’s also quite often that people just use

support directly instead of frequency.

Direct application of Apriori algorithm [1], which may be

the most well-known frequent pattern mining algorithm, is

not efficient for the problem since the sequences needs to

be re-scanned for each newly generated pattern. To identify

all frequent patterns efficiently, we build a suffix tree for

all the sequences of each type of terms. Since we care

about the occurrences of the suffix at different positions,

we attach an index bit at the beginning of each suffix that

indicates the starting position of the suffix. Then we build
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Input: A set of sequences s1, s2, . . . , sn and threshold t
Output: All position-specific frequent patterns with frequency no less than t
1. suffixTree ← buildSuffixTree(s1, s2, . . . , sn)
2. nextSet ← {−1, 1, 0}
3. frequentPattern ← null
4. start breadth-first search from the root of suffixTree
5. while (nextSet is not empty) {
6. newNextSet ← null
7. for each pattern pi ∈ nextSet {
8. frequency ← computeSupport(pi, suffixTree)/n
9. if (frequency ≥ t) {
10. frequentPattern ← frequentPattern + {pi}
11. newNextSet ← newNextSet +
12. extend(pi, suffixTree)
13. }
14. nextSet ← newNextSet
15. }
16. output frequentPattern

Figure 2. The algorithm to generate all temporal frequent patterns for a
set of sequences.

the suffix tree on top of the new suffix. The advantage

is that by traversing from the root, we can immediately

identify the starting position of a pattern. Thus to identify

all frequent patterns, we can traverse from the root with

breadth first search, where the depth of the search indicates

the length of the pattern. The support of the pattern is the

sum of the support from all leaf nodes in the subtree of the

pattern. During the traversal, if the frequency is less than

the threshold, the subtree can be pruned from any further

traversal. Therefore, the algorithm only scans the sequences

once. Since constructing suffix trees for a length n string is

O(n) [5], we can construct a suffix tree for all sequences

with time complexity O(n ×m), where n is the length of

the sequences and m is the number of sequences.

The procedure of the algorithm is shown in Figure 2.

On line 1, the function buildSuffixTree(s1, s2, . . . , sn)
applies the classical linear algorithm [5] to build suffix tree

for the set of sequences s1, s2, . . . , sn. The only difference

is that we attach the position of a suffix as an extra bit at the

beginning of the suffix for all the suffixes while building the

suffix tree. On line 8, computeSupport(pi, suffixTree)
computes the support of the pattern pi in suffixTree, by

summing the support of all leaf nodes in the subtree. On line

12, extend(pi, suffixTree) returns the set of patterns by

extending the pattern pi by one bit in suffixTree, following

all possible branches.branches.
1� -1    1 

1    -1    0 

0    -1    1  

p1 

-1 

1 

1 

p1       -1        0 

p2 

-1 

1 

p2

1

p3 

1 1

0 

0 1

0 

1 

2 

1 

2 

1 

1 

1 

Figure 3. Suffix tree for three sequences.
For illustration, we show an example in Figure 3. The

support of the leaf nodes are in italian. Let’s assume the fre-

quency threshold is 2
3 . As we can see, we can traverse from

the root with breadth-first search. For length-one frequent

patterns, we find (p3, 1), (p2,−1) and (p1, 1) having support

2, 3, 2, respectively. Therefore we identify the frequent

pattern (1) at positions 1 and 3, and (−1) at position 2.

Continuing the breadth-first search, for length-two frequent

patterns we find (p2,−1, 1) and (p1, 1,−1). Notice the

support of (p1, 1,−1) is the sum of the support of the two

leaf nodes in the subtree and therefore is 2. Thus we identify

two frequent patterns of length-two (−1, 1) at position 2 and

(1,−1) at position 1.

2) Patterns for MeSH topics: For each node on each

shortest path, we identify the depth of the corresponding

topic in the hierarchy. Since the depth of the topics in

the hierarchy indicates their generality, we are able to then

observe shifts in generality of research memes. We want to

observe frequent patterns for these shifts. We mark topics

that shift to increased generality (topics with lower depth)

as 1, and those that shift to lower generality (topics with

higher depth) as -1, and topics with no change in generality

as 0. Then we obtain a sequence of alphabet {1,−1, 0} for

each shortest path. We then search for frequent patterns in

all these sequences. Through this application, we can tell

how generality drives the shifts of research memes.

III. EXPERIMENTAL RESULTS

A. Application for Memes in Computer Science Research

1) Experiment Settings: For the first application, namely

memes in computer science research, we download the

conference sessions as well as all the paper titles the sessions

contain for six conferences: ‘SIGMOD’, ‘VLDB’, ‘KDD’,

‘ICDM’, ‘CIKM’, ‘SIGIR’, from year 1975 to year 2010. We

remove all stop-words from the paper titles and leave only

the terms. The sessions with the same name are merged.

There are totally 64,396 terms and 1,996 unique sessions.

Thus on average each session contains 32 terms.

2) Patterns on Terms: We first check the patterns for

all the three types of terms — disappearing, emerging and

stable terms. Instead of comparing the absolute numbers of

each type of terms, we compute the weight of each type by

normalizing the number of each type with the total number

of terms in the session. Since we have no knowledge about

the patterns, it’s hard for us to set a threshold to determine

if a pattern is frequent or not. Thus we set a relatively low

threshold and list the patterns of different length at each

position with the highest frequency (that is no less than the

threshold). The threshold we used is 0.05.

We show the results in Table I, II, III, where ‘1’ indicates

‘decrease’, ‘-1’ indicates ‘increase’ and ‘0’ indicates ‘no

change’. We show only the frequent patterns at position 1,

2, 3 since after position 3, the length of the frequent patterns

becomes very short. As we can see, the most frequent

patterns for disappearing terms and emerging terms always

have an alternating trend for adjacent shifts (namely for

one shift, the weight increases/decreases, then for the next

shift, the weight decreases/increases). We actually observe

similar patterns at positions beyond 3. However, since the

length of the cycles are usually short, these patterns have

relatively low frequency. This indicates that the weights of

disappearing terms and emerging terms usually do not keep

on increasing or decreasing. Instead, when a relatively large
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pos l = 1 l = 2 l = 3 l = 4

1 1 (0.56) 1, -1 (0.16) -1, 1, -1 (0.086) -1,1,-1,1 (0.075)

2 1 (0.28) 1, -1 (0.13) 1, -1, 1 (0.086) N/A

3 -1 (0.18) -1, 1 (0.107) -1, 1, -1 (0.065) -1,1,-1,1 (0.054)

Table I
THE PATTERN FOR DISAPPEARING TERMS, WHERE ‘1’ INDICATES

‘DECREASE’, ‘-1’ INDICATES ‘INCREASE’ AND ‘0’ INDICATES ‘NO

CHANGE’. THE NUMBER IN () IS FREQUENCY.

pos l = 1 l = 2 l = 3

1 -1 (0.47) 1, -1 (0.18) 1, -1, 1 (0.086)

2 -1 (0.28) -1, 1 (0.12) -1, 1, -1 (0.054)

3 1 (0.18) 1, -1 (0.11) 1, -1, 1 (0.065)

Table II
THE PATTERN FOR EMERGING TERMS, WHERE ‘1’ INDICATES

‘DECREASE’, ‘-1’ INDICATES ‘INCREASE’ AND ‘0’ INDICATES ‘NO

CHANGE’. THE NUMBER IN () IS FREQUENCY.

number of terms disappear or emerge during one shift, only a

relatively small number of terms disappear or emerge in the

next shift. One explanation is that if more terms disappear

or emerge during the shift, the memes become further and

further dissimilar to the initial meme. However, in order to

yield a cycle of shifts, the memes cannot keep on shifting

away from the initial meme. They need to shift back at some

stage. The alternate pattern of the disappearing and emerging

terms is consistent with this assumption. Furthermore, the

stable terms remain quite stable, having weights with almost

no changes during the shift.

3) Patterns on Distance: We next compute the distance

of a meme in the cycle of shifts to the initial meme. We

want to validate our assumption obtained from the previous

set of experiments, namely the memes in the cycle of the

shifts tend to shift away and shift back to the initial meme

alternatively.

Our assumption is since the research attention shifts

alternatively between more similar memes and less similar

memes, we should expect the distance of the memes in the

cycle to the initial meme to be relatively stable. We say the

distance remains stable if the change of the distance from the

previous shift is within certain threshold. We tried threshold

from 0.01 to 0.05 and found that when the threshold is above

0.03, the distance shows very stable patterns. We show the

patterns in Table IV. The distance between the memes on the

cycle of the shift to the initial meme remains very stable,

indicating research attention shifts that alternate between

more- and less-related memes, while still maintaining high

similarity to the initial meme. This also indicates that it’s

usually unlikely that the memes shift very far away from the

initial meme before heading back. In most of the cases, once

pos l = 1 l = 2 l = 3

1 0 (0.74) 0, 0 (0.24) 0, 0, 0 (0.13)

2 0 (0.37) 0, 0 (0.17) 0, 0, 1 (0.065)

3 0 (0.22) 0, 1 (0.08) 0, 1, 0 (0.054)

Table III
THE PATTERN FOR STABLE TERMS, WHERE ‘1’ INDICATES ‘DECREASE’,

‘-1’ INDICATES ‘INCREASE’ AND ‘0’ INDICATES ‘NO CHANGE’. THE

NUMBER IN () IS FREQUENCY.

L pos = 1 pos = 2 pos = 3

1 1 (0.45) 0 (0.27) 0 (0.16)

2 0, 0 (0.18) 0,0 (0.22) 0,0 (0.11)

3 0,0,0 (0.15) 0,0,0 (0.14) 0,0,0 (0.11)

4 0,0,0,0 (0.09) 0,0,0,0 (0.1) 0,0,0,0 (0.08)

5 0,0,0,0,0 (0.08) 0,0,0,0,0 (0.06) N/A

Table IV
DISTANCES OF MEMES TO THE INITIAL MEME, WHERE ‘1’ INDICATES

‘DECREASE’, ‘-1’ INDICATES ‘INCREASE’ AND ‘0’ INDICATES ‘NO

CHANGE’. THE NUMBER IN () IS FREQUENCY.

the memes shift away a little bit, they shift back immediately.

B. Application for Memes in Biomedical Research

1) Experiment Settings: We are interested in topics of

MeSH terms (Medical Subject Headings; we use ‘topic’ and

‘term’ interchangeably), a hierarchy of topics in biomedical

research. Each article in PubMed/MEDLINE is annotated

with descriptive MeSH terms. We use the same data set as

He and Parker [8] used, which is a collection of articles

for the years 1950 through 2008. For each term in the

MeSH ontology, we counted its frequency of occurrence in

each year, and accumulateed these frequencies through the

ontology (so that the frequency of a node is the sum of the

frequencies of all descents of the node as well as of itself).

We then compute the occurrence time of these memes using

the toptic dynamic model [8].

2) Memory Efficiency: To first illustrate the effective-

ness of the memory efficient algorithm, we compare the

performance of the algorithm with the naive shortest path

search algorithm where the entire graph is loaded into

memory first. The entire graph contains 103,168 nodes

and 206,040,375 edges, which takes around 3.5GB memory

while the subgraphs loaded into memory contains on average

35,559 nodes 36,321,073 edges. Therefore, the complete

graph contains 3 times of nodes and 6 times of edges of the

subgraphs on average. Loading the entire graph thus may be

prohibitive for computers with limited memory.

3) Patterns on Generality: We next show the patterns

of generality for memes in biomedical research, using the

MeSH hierarchy. We annotate the generality of the memes

along cycles, and apply the frequent pattern mining algo-

rithm to obtain a set of patterns. These patterns are shown

in Table V. As we can see, almost 80% of the memes shift

to more general memes at the very beginning. Then 40%

of the memes shift to more specific memes. Again 17% of

the memes then shift to more general memes. Starting from

position 3, then, the most frequent pattern is the one in which

the memes show little or no change of generality during the

shift. This indicates that generality of the memes tends to

shift up and down a bit at the beginning of the cycle, but

subsequently remains relatively stable.

Following the above demonstration of memes evolving

at the beginning of cycles, we study memes evolving at the

end. Since the cycles are usually of different lengths, we can

reverse the cycles and re-conduct the pattern mining process

from their ends. We show the resulting frequent patterns in

1072



L pos = 1 pos = 2 pos = 3 pos = 4

1 1 (0.77) -1 (0.45) -1 (0.36) 0 (0.36)

2 1,-1 (0.39) -1,1 (0.19) 0,0 (0.17) 0,0 (0.2)

3 1,-1,1 (0.17) -1,1,0 (0.1) 0,0,0 (0.1) 0,0,0 (0.12)

4 1,-1,1,0 (0.1) -1,1,0,0 (0.06) 0,0,0,0 (0.06) 0,0,0,0 (0.08)

5 1,-1,1,0,0 (0.06) N/A N/A 0,0,0,0,0 (0.05)

Table V
THE PATTERN FOR DISTANCE OF THE MEMES TO THE INITIAL MEME,
WHERE ‘1’ INDICATES ‘BECOMES MORE GENERAL’, ‘-1’ INDICATES

‘BECOMES MORE SPECIFIC’ AND ‘0’ INDICATES ‘NO CHANGE OF

GENERALITY’. THE NUMBER IN () IS FREQUENCY.

L pos = -1 pos = -2 pos = -3 pos = -4

1 1 (0.52) 1 (0.45) 1 (0.39) 1 (0.38)

2 1,-1 (0.27) -1,1 (0.21) -1, 1 (0.2) -1,1 (0.18)

3 1,-1,1 (0.16) 1,0,-1 (0.15) 0,-1,1 (0.1) -1,1,1 (0.08)

4 1,-1,1,1 (0.076) 1,0,-1,1 (0.1) -1,1,1,-1 (0.07) N/A

5 N/A 1,0,-1,1,1 (0.06) N/A N/A

Table VI
THE PATTERN FOR DISTANCE OF THE MEMES FROM THE END OF THE

CYCLES TO THE INITIAL MEME, WHERE ‘1’ INDICATES ‘BECOMES

MORE GENERAL’, ‘-1’ INDICATES ‘BECOMES MORE SPECIFIC’ AND ‘0’
INDICATES ‘NO CHANGE OF GENERALITY’. THE NUMBER IN () IS

FREQUENCY.

Table VI. As we can see, unlike at the beginning, generality

of memes at the end of the cycles is not stable; it continues

to change without following any clear patterns.

Therefore, the overall pattern of cycles we observe is that

memes shift up and down a bit at the beginning, quickly

go into a stable stage, then shift up and down for quite a

while before the end. We propose two explanations about

this observation:

1) The shorter the cycle, the more reliable the cycle and

the more likely the cycle reflects meaningful evolution

of the memes. This is because the shorter the cycles

are, the stronger and more clear the patterns are. The

longer the cycles, the more random the patterns.

2) If the patterns we obtained truly reflect the evolution of

memes, a common research flow revealed is this: once

research on a topic is triggered, people tend to explore

general topics, and eventually narrow down to a set

of specific topics of similar generality. At that point

there is hesitation about which topic merits further

investigation, and a period of exploration follows, in

which people randomly study extensions of current

topics. Ultimately this exploration returns back to the

initial topic.
IV. CONCLUSIONS

Research is the driving force for advancement of science

and technology in our society, where it is common to see

that some research memes persist while others fade quickly.

Despite the radical differences between different research

fields, there are many general patterns for research memes

that can possibly help us understand how research memes

evolve or help us predict the future research trends.

In this paper, we reported our research endeavors in

unfolding evolving patterns of research memes. More specif-

ically, we focus on a specific type of evolving process: from

an initial meme, research attention shifts to related topics

and then shifts back, in a cycle of shifts. We modeled this

shifting process of the cycles with shortest paths in a graph

constructed of nodes representing memes. We then proposed

an efficient algorithm for mining position-specific frequent

patterns using all shortest paths. Our experiments on two

different applications – computer science research memes

and biomedical research memes – revealed shift patterns

from different perspectives.
We believe that further techniques for mining research

meme evolution of this kind are important positive contri-

butions that the data mining community can make; with

continued work in this area we can develop new mining

methods that speed innovation in research as well as shed

light on possible recurring of some research topics.
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