
Predicting Surgical Site Infections in Real-Time 

Akpene Gbegnon 
University of Iowa Hospitals & Clinics 

200 Hawkins Drive 
Iowa City, IA 52242 

1-319-356-1616 

akpene-gbegnon@uiowa.edu 

 
W. Nick Street 
University of Iowa 

S210 Pappajohn Business Building 
Iowa City, IA 52242 

1-319-335-1016 

nick-street@uiowa.edu 

 
 
 

Jose Monestina 
University of Iowa Hospitals & Clinics 

200 Hawkins Drive 
Iowa City, IA 52242 

1-319-353-7529  

jose-monestina@uiowa.edu 

 

John W. Cromwell 
University of Iowa Hospitals & Clinics 

200 Hawkins Drive 
Iowa City, IA 52242 

1-319-384-7359 

john-cromwell@uiowa.edu 

 

ABSTRACT 

Surgical site infections (SSIs) are a major cause of morbidity, 

mortality, and hospital readmissions in general surgery patients.  

Real-time prediction of risk is needed prior to and during the time 

of an operation so that preventative strategies can be applied. In 

this study, we develop classifiers that can be used in real-time 

from combining operative data entered through a web interface 

and patient variables extracted from the EHR, to predict patients 

at risk for SSIs within 30 days of their operation, even before the 

patient leaves the operating room. We show that naïve Bayes 

(NB) and support vector machines (SVMs) can predict patients at 

risk for any SSI, or superficial SSIs, with high discriminatory 

power. We also show that applying the ChiMerge discretization 

method improves classifier performance to a greater extent in NB 

models than in SVMs. In addition, we identify the most important 

predictors by evaluating their normalized mutual information and 

chi squared statistic. Finally, we compare the SSI rates of 

discretized continuous variables and categorical variables, 

concluding that higher SSI rates are associated with lower 

preoperative hemoglobin, lower intraoperative temperature, larger 

estimated blood loss (EBL), longer procedure duration, larger 

transfusion volume, specific zip codes, dirtier wound class, 

specific surgeons, lower surgical apgar score (SAS), presence of 

an ostomy, higher American Society of Anesthesiology (ASA) 

score, higher total number of procedures during hospitalization, 

and open (vs laparoscopic) procedures. 
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1. INTRODUCTION 
Surgical site infections (SSIs) are a major cause of morbidity and 

hospital readmission, affecting 3-11% of general surgery patients 

in the United States [1,2]. They are associated with worse 

postoperative outcomes, including prolonged length of stay and 

higher mortality [3,4]. The additional healthcare costs attributed 

to SSIs are estimated to be over $20,000 per infection [5,6]. The 

increased morbidity and costs from SSIs, combined with their 

preventability, has led to numerous quality improvement 

initiatives focused on reducing their occurrence [7]. 

SSIs are categorized into 3 distinct types by the Centers for 

Disease Control [8]. The 3 types are superficial (most common 

type), deep, and organ space. They are determined based on their 

anatomic level. In addition, they differ in their risk factors, 

pathophysiology, and treatment. Deep and organ space SSIs are 

often categorized together as they represent similar processes in 

general surgery patients [7].  Lawson et al. and Blumetti et al. 

have shown that the predictors for deep/organ space SSIs vary 

from the predictors for superficial SSIs [7,9]. For example, open 

surgery (vs laparoscopic) is a predictor of all SSIs, whereas 

increased body mass index (BMI) is a stronger predictor of 

superficial SSIs than of deep or organ space SSIs. As a result of 

their findings, Lawson et al. proposed considering the different 

SSI types independently when developing prevention strategies as 

each type requires a different targeted solution [7]. 
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Predictive models for SSIs have been in existence since the 

1990’s. Often, they are scoring systems derived from a 

multivariate logistic regression analysis. One of the most 

commonly used SSI risk models is the National Nosocomial 

Infections Surveillance (NNIS) Basic SSI Risk Index [10,11]. It 

uses 3 predictors to generate a score between 0 and 3, making it 

easy to use, but has limited discriminatory ability. More recently, 

van Walraven and Musselman developed the Surgical Site 

Infection Risk Score (SSIRS), a logistic regression model, to 

predict any SSIs within 30 days of surgery. However, the model 

includes Current Procedural Terminal (CPT) codes, which are not 

immediately available during an operation. These codes are 

usually administratively assigned days to weeks following surgery 

[12]. 

Our goal has been to determine SSI risk at the time of completion 

of the surgical procedure, including features of the operation 

itself, so that alternative wound management strategies and care 

protocols can be evaluated in the highest risk population.  In this 

paper, we develop and test predictive models that can be used in 

the operating room in real-time, with high discriminatory power to 

detect general surgery patients at risk for all SSIs or superficial 

SSIs, within 30 days of surgery. Specifically, we develop naïve 

Bayes (NB) and support vector machine (SVM) models to predict 

1) any SSI vs no SSI and 2) superficial SSI vs no superficial SSI. 

We believe that predicting superficial SSIs, in addition to all SSIs, 

allows for more tailored prevention interventions and is therefore 

a more cost effective quality improvement strategy. 

Furthermore, we examine the relative importance of predictors of 

surgical site infections by mutual information, normalized mutual 

information, and chi squared statistics, and we show the 

differences in SSI rates in select predictor categories, and 

continuous variable intervals generated from ChiMerge 

discretization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. DATA COLLECTION 
The surgical dataset was extracted from the University of Iowa 

Hospitals & Clinics EHR (Epic, Verona, WI) and entered into a 

datamart created in Microsoft SQL Server (Microsoft Inc., 

Redmond, WA) using an extract, transform, and load (ETL) 

process. This process is automated through scheduled Structured 

Query Language (SQL) queries on the server. This data was then 

combined with outcomes data obtained from the American 

College of Surgeons National Surgical Quality Improvement 

Program (ACS-NSQIP), a validated, institution-based surgical 

database of patient risk factors and 30-day postoperative outcomes 

[13]. The study was approved by the University of Iowa 

Institutional Review Board. 

Our datamart contains patients who have undergone colorectal 

surgery, minimally invasive surgery, bariatric surgery, vascular 

surgery, and acute care surgery. The training set was created using 

data from patients who had undergone an operation between 

January 1, 2011 and September 30, 2013, and the validation set 

contained patient data from October 1, 2013 to December 31, 

2013.  The rates for all SSIs and superficial SSIs are shown in 

Table 1. Figure 1 shows the SSI rate per month for all, superficial, 

and deep/organ space SSIs. The SSI rates vary considerably from 

month to month, with the most common SSI being the superficial 

SSI during most months. 

 

Table 1. SSI rates in the full dataset, training set, and validation 

set 

Set Dates Number   of 

Cases 

 SSI rate      

(All SSIs) 

SSI rate 

(Superficial 

SSIs) 

Full dataset 1/1/2011 – 12/31/2013 2211 0.084 0.049 

Training set 1/1/2011 – 9/30/2013 2085 0.084 0.047 

Validation 

set 

10/1/2013 – 12/31/2013 126 0.087 0.071 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure 1. SSI rate over time for all SSIs, superficial SSIs, and deep/organ space SSIs (Training Set) 

Month vs SSI rate 
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3. PREDICTOR VARIABLES 
Predictor variables were constrained to those extractable from the 

hospital EHR and available prior to the completion of an 

operation. This constraint allows for a risk prediction to be made 

prior to the end of the operation so that an intra-operative 

intervention can be implemented by the surgeon in real-time. The 

predictor variables included demographic data (age, sex, body 

mass index (BMI), ethnicity, zip code), insurance company, 

hospital location prior to operation, total number of surgical 

operations during the hospital encounter, presence of an ostomy, 

American Society of Anesthesiologists physical status 

classification (ASA) score, preoperative hemoglobin, wound 

class, surgical apgar score (SAS) [14], estimated blood loss 

(EBL), blood transfusion volume, minimum intraoperative 

temperature, operating room, duration of operation, procedure 

category, and whether the procedure was laparoscopic/robotic or 

an open operation. Many of these predictors have been shown to 

be risk factors for SSIs [7,9]. Table 2 summarizes the variables 

used for the classifier training. 

 

Table 2. Variable description 

Feature Name Feature Type/Description 

Age Numeric 

Sex Male, female 

Ethnicity Hispanic, non-Hispanic, unknown 

Zip code Categorical 

Surgical apgar score (SAS) Numeric, from 0 to 10; Risk score for 

postop morbidity and mortality; lower 

score associated with worse outcome 

 Preoperative hemoglobin (Preop Hb) Numeric 

Estimated blood loss (EBL) Numeric 

Blood transfusion volume (Transfusion) Numeric 

ASA score Numeric, from 1 to 5; Score for health 

status; higher score indicates sicker 

patient; (1=healthy; 5 = moribund) 

Body mass index (BMI) Numeric 

Minimum intraoperative temperature 

(Min Temp) 

Numeric 

Wound class Clean (Cl), clean-contaminated (Cl-Co), 

contaminated (Co),                            

dirty-or-infected(Di-I), unknown (U) 

Surgeon Categorical 

Insurance company Categorical 

Hospital location prior to operation 

(Location) 

Categorical 

Total number of surgical operations  

during the hospital encounter           

(Total Procedures) 

Numeric 

Presence of ostomy (Ostomy) Categorical (0=no,1=yes) 

Operating room Categorical 

Procedure duration (Duration) Numeric 

Procedure category Categorical 

Laparoscopic/robotic surgery vs open 

operation  (Laparoscopy) 

Categorical                                           

(0 = open,   1 = laparoscopic/robotic) 

 

4. PROCEDURE CATEGORIZATION 
There are two groups of variables needed to use our model in real-

time, before the patient leaves the operating room. The first group 

is automatically obtained from the hospital EHR and entered into 

our datamart. The second group of variables is obtained at the 

time of the operation and is entered into a web interface by the 

user before being transferred to the datamart. These two groups of 

variables are then entered into the model to generate a prediction 

in real-time. 

The procedure type is an example of the second group of 

variables. It is not immediately available in the EHR and must be 

entered by the user. In order to simplify the data entry by the user, 

the procedure type was categorized into 9 groups:  colon, 

appendix, gallbladder, stomach, hernia, pancreas, small intestines, 

colonoscopy, and other. In addition, the procedure is specified by 

the user as either laparoscopic/robotic or open. 

Regular expressions were used to categorize 126 unique CPT 

codes in the dataset into the 9 aforementioned groups. For 

example, the CPT code “CRS ROBOTIC SEGMENTAL COLON 

RESECTION S SYSTEM” was converted to the procedure 

category colon if the term “colon”, “ostom”, “colect”, “procto”, or 

“CRS” was present in the procedure name. Table 3 summarizes 

the stems used to assign a procedure to each category and the 

order in which they were prioritized. Table 4 shows the total and 

superficial SSI rates associated with each procedure category. 

 

Table 3. Procedure Categorization Using Regular Expressions 

(Training Set) 

Order of 

Assignment 

Text Present in Procedure 

Name 

Assigned Procedure 

Category 

1 “gastro” stomach 

2 “nissen” stomach 

3 “gastrect” stomach 

4 “pancreas” pancreas 

5 “cholecyst” gallbladder 

6 “hernia” hernia 

7 “small bowel” small intestines 

8 “append” appendix 

9 “ostom” colon 

10 “colect” colon 

11 “CRS” colon 

12 “colonoscopy” colonoscopy 

13 If none of the above is present other 

 

Table 4. Procedure Category and SSI rate (Training Set) 

Procedure 

Category 

Total cases SSI rate   (All)         

(%) 

SSI rate 

(Superficial) (%) 

Colon 758 16.1 8.8 

Other 335 9.3 4.8 

Appendix 103 3.9 3.9 

Gallbladder 261 2.7 1.5 

Stomach 210 2.4 1.9 

Hernia 411 1.5 1.0 

Colonoscopy 1 0 0 

Pancreas 1 0 0 

Small intestines 5 0 0 

 

5. WEB INTERFACE 
The web interface was developed using STATISTICA Enterprise 

Platform (StatSoft Inc.). As noted earlier, users submit variables 

obtained at the time of operation that are not immediately 

available in the EHR. This information is then transferred to the 

datamart, where it is combined with variables that were extracted 



directly from the EHR. The data is then accessed from within R 

(R Foundation for Statistical Computing, Vienna, Austria), and 

used by the classifiers to make predictions of SSI risk. The entire 

process from intraoperative data gathering to obtaining 

predictions takes less than 10 minutes on average. The overall 

design of the web interface as well as a screen shot is shown in 

Figure 2. 

a)  

 

b) 

 

Figure 2. Web interface a) design and b) screen capture 

 

6. VARIABLE DISCRETIZATION 
Compared to other discretization methods, ChiMerge [15] has 

been shown to better improve classifier performance when applied 

to electronic medical record (EMR) datasets [16]. In the 

ChiMerge algorithm, each distinct value is treated as a separate 

interval, and the values are sorted. Adjacent pairs of intervals are 

then merged if the class labels in those intervals are not 

statistically significantly different from each other (alpha = 0.05). 

Our class labels were all SSIs. We applied the ChiMerge method 

to our dataset to improve classifier performance. We also used the 

discretization output to find predictor intervals associated with 

high SSI risk. Table 5 shows the discretization output. The total 

SSI rates of the continuous variable intervals with at least 20 

patient cases are shown in Figure 3.  Higher SSI rates in patients 

with lower preoperative hemoglobin, lower minimum 

intraoperative temperature, higher EBL, longer procedure 

duration, and larger transfusion volume were expected findings. 

Interestingly, there was a non-linear relationship between age and 

SSI rate. We observed higher SSI rates with increasing age 

intervals until interval 4 (age≥66.5), wherein the SSI rate was low. 

Lawson et al. also found a lower odds of SSIs (OR 0.85, p<0.01) 

in patients 65 years and older [7]. The SSI rates in the BMI 

intervals were also surprising. We expected the SSI rates to 

increase with increasing BMI; instead, there was a bimodal 

distribution, with high rates found in intervals 2 (BMI 14.0-39.4) 

and 4 (BMI>41.5). This unexpected finding may be due to the 

fact that the BMI intervals generated from the ChiMerge 

discretization are not concordant with established clinical 

categories. For example, interval 2 contains patients who are 

underweight (BMI<18.5), normal weight (BMI 18.5-24.9), 

overweight (BMI 25 – 29.9), and obese (BMI >30). In this case, 

the inclusion of 4 different clinical categories into one interval 

may have skewed the analysis of SSI rates. In the case of 

procedure duration, note the duration intervals alternate between 

low and high SSI rates between intervals 6 and 19. This highlights 

the limitations of ChiMerge discretization as it only evaluates 

consecutive values for similarity, resulting in local optimization, 

whereby if two very similar intervals are separated by any size 

interval that is statistically different, the two similar intervals are 

not merged. 

Table 5. ChiMerge discretization of continuous variables  

Variable (Interval Number) Variable  Intervals 

Age (1) 18-35.4         (2) 35.5-65.4         (3) 65.5-66.4       (4) 66.5-100  

Preop Hb (1) 6-11.54         (2) 11.55-15.94     (3) 15.95-16.04   (4) 16.05-18.04  

EBL (1) 0-31.4           (2) 31.5-33.9         (3) 34.0-112.4     (4) 112.5-177.4     

(5) 177.5-189.9  (6) 190.0-587.4    (7) 587.5-7100  

Transfusion (1) 0-312.4          (2) 312.5-1712.4   (3) 1712.5-3900  

BMI (1) 13.0-13.9       (2) 14.0-39.4         (3) 39.5-41.4       (4) 41.5-84  

Min Temp             (1) 87.8-87.94     (2) 87.95-88.04     (3) 88.05-90.74   (4) 90.75-90.84  

(5) 90.85-94.14  (6) 94.15-94.24     (7) 94.25-98.24    (8) 98.25-101.3  

Duration (1) 6-41.4 …      (36) 567.5-675     …. Total of 36 intervals 

 

7. PREDICTOR IMPORTANCE 
Mutual information (MI) is a symmetric measure of the 

information shared between two variables. It is used as a variable 

ranking method for feature selection and has been shown to 

improve model performance in clinical datasets [17,18]. The 

normalized mutual information (NMI) more easily facilitates the 

comparison of variables however, as it ranges from 0 to 1, 

whereas MI has no upper bound and favors variables with many 

possible values. Two commonly used normalization methods are 

the Kvalseth method (K-NMI) [19] and the Strehl and Ghosh 

method (S&G-NMI) [20].  In table 6, we show the variable 

rankings (i.e. predictor importance) from the K-NMI method, and 

include the S&G-NMI, MI, and chi squared statistic for 

comparison. The top 5 predictors that had the highest K-NMI and 

that were statistically significant by chi squared analysis were 

ostomy presence, EBL, procedure duration, procedure category, 

and total procedures. Ranking features could allow us to prioritize 

interventions to specifically address the most important variables. 

For example, we may aim to shorten the procedure duration 

knowing that it is an important predictor of SSIs.  

We show the SSI rates for some of the important categorical 

variables in Figure 4. The SSI rates are higher in patients with an 

ostomy, larger number of total procedures, dirtier wound class, 

lower surgical apgar score (SAS) and higher ASA score (both 

signify sicker patients), and in patients who had an open operation 

(vs laparoscopic). These findings support our current 

understanding of risk factors for SSIs. Interestingly, we found 

certain zip codes to be associated with higher SSI rates. These 

regional differences are likely multi-factorial, and may be due to 

socioeconomic status, distance from the main hospital, access to 

care, and the overall environmental burden. 



  

a) 

 

e) 

 

b) 

 

f) 

 

c) 

 

g) 

 

 

 

d) 

 

8. MODEL DEVELOPMENT 
We compared the performance of naïve Bayes (NB) and support 

vector machine (SVM) classifiers, with and without ChiMerge 

discretization, in predicting all SSIs and superficial SSIs. These 

two classifiers were chosen for further study as they were the best 

performing models in our previous work predicting hospital 

readmissions, which in surgical patients, are often due to SSIs.  

All of the experiments were performed using R language version 

2.15.1. The NB and SVM classifiers were available in the e1071 

package. For the SVM model, a linear kernel and C=0.1 was 

chosen after a tuning analysis. In addition, class weights were 

assigned according to the proportion of positive to negative cases 

in the training set, because of the asymmetric class sizes in the 

dataset.  

Missing continuous variables in the testing set were imputed with 

the mean or median value from the training set. Missing 

categorical variables were imputed with the mode value from the 

training set. New categorical variable values that were not present 

in the training set and therefore not used to train the model were 

imputed with the mode values from the training set. The training 

set was evaluated using 10-fold cross validation. 

The F-score is the harmonic mean of the sensitivity and positive-

predictive value for a given threshold [21]. The maximum F-score 

and its associated probability threshold were obtained for each 

fold of a 10-fold cross-validation of the training set. This 

threshold (CUTOFF) was then used to classify patients at risk for 

an SSI. The median threshold generated from the 10-fold cross-

validation of the training set was used as the final model threshold 

in the validation studies.  

If the median threshold was greater than 0.50, it was replaced with 

0.50 to maximize the sensitivity (this only occurred in the 

NB(+ChiMerge) prediction of superficial SSIs). 

The calibration of a model describes how closely the predicted 

probabilities agree with the observed outcomes [22]. The 

calibration error (CAL) is the difference between the observed 

and predicted risk of SSIs. We determined the calibration error for 

the top quintile of predicted risk for the NB and SVM models. 

The ROCR package was used to obtain the model area under the 

curve (AUC). In addition, the model accuracy (ACC), sensitivity 

(SEN), specificity (SPEC), positive predictive value (PPV), and 

negative predictive value (NPV), were obtained using the 

probability threshold associated with the maximum F-score.  

The NB and SVM model performances are shown in Tables 7 and 

8. ChiMerge discretization improved the performance of the NB 

model in predicting superficial SSIs and all SSIs, and the SVM 

model in predicting superficial SSIs, but had no effect on the 

SVM model’s prediction of all SSIs. Both models performed 

better when predicting all SSIs than when predicting superficial 

SSIs. In regards to model sensitivity, an important metric for 

detecting at risk patients and performing interventions in a cost-

effective manner, the SVM(+ChiMerge) outperformed the 

NB(+ChiMerge) model in predicting superficial SSIs and all SSIs 

(Tables 7,8,9). In the validation set, both models performed worse 

in predicting superficial SSIs. This may be due to the difference in 

superficial SSI rates between the training set (0.047) and the 

validation set (0.071). Finally, the SVM model had lower 

calibration error than the NB model, making it a more reliable 

model in supplying accurate risk probabilities. 
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Figure 3.  SSI rates of discretized continuous variables that contain at least 20 patient cases (Training Set) 
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Table 6. Normalized mutual information, mutual information, and chi squared statistic for the a) most and b) least important predictors 

(ranking is ordered by K-NMI) 

 

a)  

Variable K-

NMI 

S&G- 

NMI 

MI Chi squared statistic 

SSIs 1 1 0.416 2072.0, df=1 , p-value= 0 

Ostomy 0.055 0.057 0.031 109.4, df=1, p-value= 1.32e-25 

EBL 0.043 0.055 0.047 173.5, df=6, p-value= 8.09e-35 

Duration 0.035 0.058 0.073 260.2, df=35, p-value= 3.29e-36 

Zip code 0.032 0.072 0.128 485.5, df=452, p-value= 0.13 

Procedure 

category 

0.029 0.041 0.041 108.9, df=8 , p-value= 6.69e-20 

Total 

procedures 

0.028 0.030 0.019 72.7, df=12, p-value= 9.86e-11 

Transfusion 0.028 0.029 0.009 43.7, df= 2, p-value= 3.26e-10 

Surgeon 0.021 0.035 0.045 115.1, df=22, p-value= 1.36e-14 

Wound class 0.014 0.017 0.014 38.2, df=4, p-value= 9.97e-08 

Location 0.013 0.016 0.013 45.4, df= 35, p-value= 0.11 

 

 

 

 

b)  

Variable K-

NMI 

S&G- 

NMI 

MI Chi squared statistic 

Insurance 

company 

0.011 0.019 0.025 77.8, df=93, p-value= 0.87 

BMI 0.010 0.011 0.006 17.8, df= 3, p-value= 0.0005 

Min Temp 0.010 0.012 0.009 30.2, df=7, p-value= 8.88e-05 

SAS 0.009 0.013 0.013 44.4, df=8, p-value= 4.85e-07 

Operating room 0.007 0.013 0.018 54.1, df= 38, p-value= 0.04 

Preop Hb 0.007 0.008 0.005 17.0, df=3, p-value= 0.0007 

Ethnicity 0.007 0.007 0.003 4.60, df=2 , p-value= 0.10 

ASA score 0.006 0.007 0.006 17.5, df=4, p-value= 0.002 

Age 0.004 0.005 0.004 11.6, df=3, p-value= 0.009 

Laparoscopy 0.003 0.004 0.002 6.1, df=1, p-value= 0.01 

Sex 0.002 0.002 0.002 4.0, df=1, p-value= 0.04 
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d)  

 

 

h)  

Figure 4.  SSI rates (%) of select categorical variables that contain at least 20 patient cases (Training Set) 
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Table 7. Naïve Bayes model performance in predicting all SSIs and superficial SSIs (+/- ChiMerge discretization); SD = standard deviation 

Set Classifier Class label AUC (SD) MAX  

F-SCORE 

CUTOFF SEN (SD) SPEC PPV NPV ACC CAL 

Training NB (-ChiMerge) All SSI 0.76 (0.05) 0.34 0.06 0.63 (0.09) 0.80 0.24 0.96 0.79 0.34 

Training NB (+ChiMerge) All SSI 0.81 (0.04) 0.40 0.44 0.57 (0.17) 0.88 0.34 0.96 0.86 0.48 

Training NB (-ChiMerge) Superficial SSI 0.70 (0.12) 0.23 0.50 0.44 (0.23) 0.82 0.26 0.97 0.78 0.43 

Training NB (+ChiMerge) Superficial SSI 0.78 (0.07) 0.34 0.69 0.42 (0.17) 0.93 0.39 0.97 0.91 0.32 

Validation NB (+ChiMerge) All SSI 0.75 --- 0.44 0.55 0.77 0.18 0.95 0.75 --- 

Validation NB (+ChiMerge) Superficial SSI 0.67 --- 0.69, 

imputed 

with 0.50 

0.11 0.89 0.07 0.93 0.83 --- 

 

Table 8. SVM model performance in predicting all SSIs and superficial SSIs (+/- ChiMerge discretization); SD = standard deviation 

Set Classifier Class label AUC (SD) MAX 

F-SCORE 

CUTOFF SEN (SD) SPEC PPV NPV ACC CAL 

Training SVM (-ChiMerge) All SSI 0.79 (0.03) 0.38 0.14 0.64 (0.13) 0.84 0.28 0.96 0.82 0.04 

Training SVM (+ChiMerge) All SSI 0.79 (0.03) 0.39 0.14 0.58 (0.16) 0.87 0.34 0.96 0.85 0.04 

Training SVM (-ChiMerge) Superficial SSI 0.71 (0.08) 0.24 0.09 0.46 (0.28) 0.87 0.23 0.97 0.85 0.05 

Training SVM (+ChiMerge) Superficial SSI 0.76 (0.09) 0.27 0.11 0.42 (0.20) 0.87 0.38 0.97 0.83 0.13 

Validation SVM (+ChiMerge) All SSI 0.71 --- 0.14 0.64 0.70 0.17 0.95 0.69 --- 

Validation SVM (+ChiMerge) Superficial SSI 0.64 --- 0.11 0.22 0.88 0.13 0.94 0.83 --- 

 

Table 9. Confusion matrix of a) NB(+ChiMerge) and                   

b) SVM(+ChiMerge) for prediction of all SSIs (Validation Set) 

a)                                                  b)  
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Figure 5.  Profit curve of SVM(+ChiMerge)  prediction of all 

SSIs (Validation Set) 

 

9. DISCUSSION AND CONCLUSIONS 
In this paper, we have discussed a framework for designing a 

predictive model that can be used for real-time intra-operative 

decision making. To our knowledge, our work is the first to 

present a model that can be used directly from the operating room. 

We designed models that can detect patients at risk for all SSIs, 

and patients at risk for superficial SSIs. The results from our 

experiments suggest that naïve Bayes and support vector 

machines can indeed do this with high discrimination.   

Previous studies have investigated the risk factors for SSIs. Here, 

we have outlined the relative importance of those common 

predictors using the Kvalseth NMI. The top 5 predictors for SSIs 

that are also statistically significant after a chi squared statistic 

analysis are ostomy presence, EBL, procedure duration, procedure 

category, and total procedures. 

In our hospital, we have estimated the cost of an SSI to average 

$28,000 per patient. If the cost of an intervention (eg. a wound 

management system) is around $500, we would be able to afford 

56 false positives for every 1 false negative to break even 

financially. Given that our SVM(+ChiMerge) model has 9 false 

positives for 1 false negative (Table 9) we believe using this 

model in a clinical setting will offer substantial cost savings. We 

demonstrate this further using a profit curve. We show that when 

the SVM(+ChiMerge) model is applied to the validation set, a 

maximum cost savings of over $50,000 can be achieved when a 

probability threshold of 0.12 is used, assuming our intervention is 

effective 33% of the time, which is a conservative estimate 

compared to what has been reported in the literature [23,24] 

(Figure 5).  

0.29                                    0.12                                      0.02  

                                         P (SSI) 

C
o

st
 S

av
in

g
s 

($
) 

10000 

50000 



A limitation of our study is not including pre-existing conditions 

in our models. Co-morbidities such as renal failure, diabetes, 

chronic obstructive pulmonary disease (COPD), hypertension, 

steroid use, disseminated cancer, and radiation therapy have been 

shown to be associated with SSIs but were not included in our 

models [7]. The current implementation of the hospital EHR is 

not yet conducive to obtaining reliable co-morbidities, nor does it 

provide diagnostic or procedural coding in real-time. We plan to 

include co-morbidities in our future models as advancements in 

the EHR system are made. 

These models can be easily extended and generalized to predict 

other outcomes (eg. hospital readmissions) in other patient 

populations (eg. Internal Medicine patients), by substituting the 

outcomes variable, and by adding pertinent predictors to the 

model. In future work, we will determine if the use of these 

predictive models in the operating room targeting high risk 

patients for SSI preventative strategies is effective in preventing 

SSIs. This will be done in the context of a randomized controlled 

clinical trial.  
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