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Abstract

This paper uses Gaussian process techniques to model time series data of HbA1c level, a common measure to monitor
or screen diabetes. The HbA1c level estimates how well blood sugar is under control. To facilitate the control of
diabetes, we develop a patient-level model to individually predict the development of the disease for each patient.
Gaussian processes represent a successful machine learning technique known for their flexible modeling abilities and
high predictive performances. This approach allows multi-dimensional inputs and assigns a confidence score to the
predictions, accounting for temporal uncertainty of time series data. The purpose of this paper is to discuss the use of
the Gaussian process technique, previously unseen in diabetes research, to monitor the development of the disease.
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1 Introduction

The hemoglobin A1c test (HbA1c) is an important blood test used to determine how well diabetes is being controlled
for patients. The test periodically measures the average amount of sugar in the blood (approximately every 90 days in
general). Monitoring the development of HbA1c test results help physicians and patients to manage diabetes and keep
the blood sugar level within the target range. Temporal analysis on the trajectory of HbA1c provides insights into how
a patient, compared to other patients, controls his or her disease. The temporal analysis also contributes to the study
of what causes the HbA1c values rise and fall. In the long term, predictive models such as the ones described here can
be used to examine the effects of different treatments on patient sub-populations using retrospective data. Therefore,
the paper is inspired by the question: Given the information of patients and the observed pattern of HbA1c test history,
how can we predict the future development of HbA1c?

In this paper, we propose a Gaussian process regression approach to model the time series for the development of
HbA1c. Scholarly work by MacKay [6] and Rasmussen [7] provided detailed discussions on Gaussian process theory.
For completeness and convenience, we introduces the basics of Gaussian Process Regression and its application on
time course data in Section 2. We describe the experimental design and the dataset in Section 3. Section 4 presents
the experimental results and Section 5 concludes the paper.

2 Gaussian Process Regression

A Gaussian process (GP) is a non-parametric stochastic process. Gaussian processes generalize the Gaussian probabil-
ity distribution, extending multivariate Gaussian distributions to infinite dimensionality (variables) [7]. We can loosely
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view a vector of infinite dimensionality as a function. A Gaussian process defines a distribution over these functions
and the inference takes place directly in function space. As a Gaussian distribution is specified by a mean vector, µ,
and covariance matrix Σ, a Gaussian process is specified by a mean function m(x) and covariance function k(x, x′).
If we denote a Gaussian distribution as: f ˜ N (µ,Σ), a Gaussian process would be f(x) ˜ GP(m(x), k(x, x′)). The
covariance function (or kernel), k(x, x′) controls how one observation relates to another. We chose an RBF kernel for
the covariance function.

Two-dimensional Gaussian Distribution 
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Figure 1: Multi-dimensional Gaussian distributions and an alternative representation

In the example of two-dimensional (bivariate) Gaussian distribution shown in Figure 1a, we observed x1 = 0.9.
Given the available two-dimensional covariance matrix and the observed x1, we obtain a distribution for x2 values
(represented in Figure 1b). We can also compute the probability mass for an observation (x1, x2) = (0.9, 0.8). It
is natural to consider extending the setting to a higher-dimensional space, such as a time series shown in Figure 1c,
where y-axis shows the readings of HbA1c and x-axis shows the dimensions in temporal order (e.g. age, sequence of
visit, or number of months since the first visit).

Time series, well exemplified by stock prices, are a sequence of data points ordered by uniform successive time
intervals. Time series analysis aims to extract meaningful temporal characteristics of the data and to predict data points
before they are measured. The HbA1c monitoring data has a natural temporal ordering, providing an appropriate
example for time series analysis. It is reasonable to believe that, in the case of HbA1c monitoring, observations close
together in time will be more closely related than observations further apart. Likewise, patients who are similar to each
other are more likely to develop equivalent patterns in time than patients who are dissimilar. In this paper, we consider
the HbA1c test results as being some function over time and use regression models to capture patterns of changes in
HbA1c. As shown in Figure 2, the trajectories of HbA1c test vary widely between different patients. In this paper, we
used Gaussian process regression to discern patterns from the noisy time series.

Gaussian process regression is motivated by the problem: given some noisy observations of a dependent variable
for some independent variable x, what is the best estimate of the dependent variable at a new value, x∗. The method
assumes an underlying process which generates “clean” data. The goal of the method is to estimate the unknown under-
lying process from a finite number of noisy observed data. Research has demonstrated the value of Gaussian process
regression on respiration signal [1], on gene relevance networks [4], and on temporal gene expression data to estimate
the expression trajectory [3, 8] and to estimate time shifts [5]. The advantage of Gaussian processes, compared to
other learning models, is the ability to capture the relationship between variables with a multi-dimensional covariance
matrix. Applying Gaussian processes in clinical studies allows us to understand how the patient demographics relate
to their medical conditions, their prescribed medications or procedures, and their lab test results.
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Figure 2: Examples of HbA1c monitoring for more than 10 years. Each line represents the HbA1c
trajectory for a patient. The time interval for each observed HbA1c reading, as shown in the graph,
varies widely between patients and even for one patient.

3 Experimental Design

We applied Gaussian process (GP) regression and Support Vector Machine (SVM) regression for the analysis of time-
series on an obfuscated1 dataset coming from a cohort of adult outpatients having diagnosis of Diabetes Type I and
Type II. The dataset captures the HbA1c readings for more than ten years and minimum personal information for 8,565
patients. To examine the effect of sparse data, we created a subset of five years (60 months) of readings, containing
1,559 patients. The format of the data presents as:

{age,race,sex,hba1c t0,hba1c t1,hba1c t2,...,hba1c t60}.

We used the Weka[2] implementation for both Gaussian Process regression and Support Vector Machine regres-
sion for the experiments. The choice of kernel is RBF for both models, using the default parameter settings from
Weka. To evaluate the two algorithms, we trained the models using the limited patient demographics and time series
from t1 to tx−1 and tested on time tx, where t1 is always the time of the patient’s first measurement. We performed
five-fold cross-validation for the evaluation and used the Mean Absolute Error (MAE) for each time (t1 ... tx) and for
each patient. To evaluate the performance for each time, we averaged the MAE for all the actual observations tested
at the time tx. To evaluation the performance for each patient, we averaged the MAE from all observed times t1 to tx
for a given patient.

We also created an interpolated dataset for the subset, in hopes of improving the similarity measure between pa-
tients that have HbA1c measurements at different time points. Missing months were filled in using linear interpolation
between readings, and with the last reading for times beyond that patient’s last visit. We used only the actual observed
data to compute the MAE for the evaluation.

1We obfuscated the data by randomly swapping values in gender and race attributes and adding a zero-mean
Gaussian number to each HbA1c reading.

3



4 Experimental Results

The experiments compared Gaussian process regression to Support Vector Machine regression. The goal of the exper-
iments is to examine the predictive capability of the suggested approach and to observe the trends of the predictions.

Table 1 and Figure 3 compare the experimental results between GP regression and SVM regression. The GP
regression model outperforms SVM regression model for the 5-year interpolated data. Although GP regression has
lower performance on the 5-year non-interpolated data, the difference is small. In the setting of more sparse data such
as the 10-year data, the GP regression model still outperforms SVM regression model.

Table 1: Comparison between GP and SVM regression, using paired T-test.

Experiments GP SMO P-value
Month view (interp 5 yrs) 1.2156* 1.3334 7.698e-09
Patient view (interp 5 yrs) 1.2175* 1.3332 <2.2e-16
Month view (non-interp 5 yrs) 1.0250 1.0087* 0.01858
Month view (non-interp 10 yrs) 1.0274* 1.0343 0.02121
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Figure 3: MAE comparison chart at the level of month

Figure 4 visualizes the performance for the two regression models at the level of months/time (Figure 4a) and at
the level of patients (Figure 4b). In both subgraphs, points appearing in the bottom right indicate that the GP regression
achieved lower MAE than the SVM regression. For both Figure 4a and Figure 4b, the majority of points fall to the
bottom right panel, indicating that GP regression outperforms SVM regression.

Figure 5 presents two examples of predictions at the level of patients. Both models are strong in stable patients
but weak for patients with wide fluctuation for their HbA1c tests.
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Figure 4: Comparison of GP and SMO regression.
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Figure 5: Examples of a good and a bad prediction for two patients.

5 Conclusion

In this paper, we applied Gaussian process regression to model and predict the time series of HbA1c readings for
diabetes patients. Gaussian processes, a successful machine learning technique known for their flexible modeling
abilities and high predictive performances, captures relationships among multi-dimensional inputs and accounts for
the temporal uncertainty of time series data. Our experimental results hold promises for using Gaussian process
regression to model HbA1c time series.

Future work will test the approach on a real enhanced dataset, including important additional information such
as patient life styles, medication records, comorbidities, and other lab tests. By separating patients by disease type
and lining them up so that t1 represents the time of diagnosis, we can more clearly discover the underlying trends
of the noisy observed data to predict the development of the disease. By including treatment information, we can
observe - and therefore predict - the effect of different medications on the course of the disease, and thereby examine
the expected effect of treatments regimens on individual patients, as well as demographic subgroups.
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