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Abstract—Neural networks are capable of learning rich, non-
linear feature representations shown to be beneficial in many pre-
dictive tasks. In this work, we use these models to explore the use
of geographical features in predicting colorectal cancer survival
curves for patients in the state of Iowa, spanning the years 1989 to
2013. Specifically, we compare model performance using a newly
defined metric – area between the curves (ABC) – to assess (a)
whether survival curves can be reasonably predicted for colorectal
cancer patients in the state of Iowa, (b) whether geographical
features improve predictive performance, and (c) whether a
simple binary representation or richer, spectral clustering-based
representation perform better. Our findings suggest that survival
curves can be reasonably estimated on average, with predictive
performance deviating at the five-year survival mark. We also
find that geographical features improve predictive performance,
and that the best performance is obtained using richer, spectral
analysis-elicited features.

I. INTRODUCTION

The rise of machine learning and corresponding advent
of various deep learning methodologies in recent years hold
great promise as such methods are capable of learning rich,
non-linear feature representations. Such representations have
been shown to be beneficial in a variety of domains, including
medicine and public health. This work is concerned with
methodology applied to such areas. More specifically, our
focus is on exploring different representations of geographical
features that can be used to predict colorectal cancer survival
curves for patients in the state of Iowa.

To elaborate on such a problem, consider Figure 1, which
shows colorectal cancer mortality rates, spanning the years
1989 to 2013, by zipcode tabulation area (ZCTA), for the state
of Iowa. First, we wish to point out that many zipcodes have
mortality rates at or above 30%, which shows the importance
of accurately assessing the survival outlook of patients at the
time of diagnosis, which may better inform treatment deci-
sions [1]. Secondly, Figure 1 shows that different geographic
locations experience different mortality rates. In other words,
location appears to have a bearing on survival outlook.

Survival outlook-disparity by location is, unfortunately,
not unexpected. Geographic location has been shown to have
an effect on health care access, thereby affecting colorectal
cancer survival outlook [2]. Moreover, environmental factors
found to increase the likelihood of developing colorectal cancer

Mortality Rate

Fig. 1: Colorectal cancer mortality rate by ZCTA in the state
of Iowa for the years 1989 to 2013.

tend to be spatially grouped (e.g., houses built when lead-
based paint was the norm); incorporation of such factors in
predictive models have been shown to provide performance
improvements.

Therefore, because colorectal cancer mortality manifests
itself in a spatially heterogeneous manner, a major challenge in
accurately predicting colorectal cancer patient survival curves
is to construct models that are spatially sensitive to patient
locale: key factors affecting survival in large cities may be very
different from those in rural areas. This work, therefore, ex-
plores two different ways of representing geography – termed
simple binary representation (SBR) and rich representation –
spectral analysis (RR-SA) – for use as features in constructing
neural network-based predictive models.

The contributions of this work are enumerated as follows:

1) We investigate whether colorectal cancer patient survival
curves can be reasonably predicted for patients in the state
of Iowa.

2) We examine whether geographical features improve the
accuracy of survival curve predictions over models trained
without the use of geographic features.

3) We explore a rich representation of geographical features
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through spectral analysis (RR-SA) of the underlying
adjacency graph of the ZCTAs to address the spatial
heterogeneity challenge.

4) We determine whether the simple binary representation
(SBR) or richer, spectral analysis representation (RR-SA)
leads to more accurate survival curve predictions.

5) We propose a new metric – area between curves (ABC)
– to assess the quality of survival curve predictions.

The remainder of this work proceeds with an outline of
our methods of representing geographical features and cor-
responding neural network architecture associated with each
such representation (Section II). Next, we discuss our dataset,
which contains 46000 Iowan patients diagnosed with colorectal
cancer between the years 1989 and 2013, followed by our ex-
periments and results (Section III). Finally, we discuss related
work (Section IV) prior to concluding the paper (Section V).

II. LEARNING GEOGRAPHICAL REPRESENTATIONS FOR
SURVIVAL CURVE PREDICTION

In this section we discuss our methodology, where we begin
by outlining some preliminary notation and problem facets, fol-
lowed by a discussion of Kaplan-Meier re-representation. Next,
we discuss the problem of predicting individual Kaplan-Meier
curves and formalize the notion of making such predictions
using neural networks. The section concludes with a discussion
on the different geographical representations explored in this
work.

A. Preliminaries

Let {(x(i), e(i), t(i))}ni=1 be a dataset of n instances, where
feature vector x(i) ∈ Rm, event label e(i) ∈ {0, 1}, and time
of event occurrence t(i) ∈ {0, 1, . . . , T}. Here, t(i) represents
a discrete time at which the event of interest e(i) has occurred
(i.e., e(i) = 1) or the last discrete time instance i has been
observed and the event has not occurred (i.e., e(i) = 0). In
this latter case (e(i) = 0), when t(i) = T we know the event
never occurs to the instance during the study period (spanning
T discrete time periods). If, however, t(i) < T then we only
know that the instance did not experience the event up to t(i),
but don’t know what happened during the T − t(i) remaining
time. Data having the event-time representation just described
are referred to as censored data, or more specifically right-
censored data. An instance i is considered censored when
e(i) = 0 and t(i) < T . Censored data, and how we handle
them, are elaborated on in a subsequent subsection.

More concretely, t ∈ {1, . . . , T} might represent (as in
our experiments) six-month patient follow-up periods, with
t = 0 being the entrance of patients to the study. Entrance
to the study, in this case, occurs when a patient is diagnosed
with colorectal cancer. For a particular patient i, e(i) = 1 if i
dies from colorectal cancer, and t(i) indicates the time of this
occurrence. On the other hand, an individual may move across
the country, pass away from a non-colorectal cancer related
complication or, for whatever reason, lose contact prior to the
end of the study period. In such cases (i.e., t(i) < T ), and
when patients are not known to have died from their disease,
e(i) = 0.

Each component of instance vector x(i) represents the
measurement (quantification) of a particular feature. Certain

groups of these components will be referenced directly later
on in this work and we therefore define notation to reference
these particular groups of feature values. Let z contain the
set of index values that index the geographical features that
compose x(i) and let a denote the full set of index values
(i.e., a = {1, . . . ,m}). These index sets will be used to
reference specific components of x(i); i.e., x(i)

z is the subvector
of instance i containing geographical feature values, and x

(i)
a\z

contains non-geographical feature values.

Notation Description

x(i) ∈ Rm Feature vector of instance i.
e(i) ∈ {0, 1} Event label of instance i.
t(i) ∈ {1, . . . , T} Discrete time of e(i).
y(i) ∈ [0, 1]T Outcome vector of instance i.
ŷ(i) ∈ [0, 1]T Predicted outcome vector of instance i.

z Set of geographical feature index values.
a Set of all feature index values.
M A map.
Γ(·) Function that determines discrete

geographic entity membership.

P (·) Calculation of a probability.
g : Rm → [0, 1]T Neural network.
L(·) An arbitrary loss function.
Smooth Output smoothing function.

ZZZ Adjacency matrix constructed from M.
Common Function that determines whether two geographic entities in

M are adjacent.
QQQspec Top k eigenvectors from QQQ, selected based on largest

eigenvalues in λλλ.
qlabel The result of applying kMeans clustering to QQQspec.
Enrich Function that assigns values in QQQspec to an instance.

TABLE I: Notation used throughout this work.

The notation related in this and future sections is related,
for convenience, by Table I.

B. Kaplan-Meier Re-representation

With our preliminary notation defined, we return to elab-
orating on the censored nature of the data. As mentioned,
each instance i has a corresponding event label e(i) and time
of event occurrence t(i). We wish, however, to transform
this tuple-like representation to one that is in the form of
a Kaplan-Meier survival curve (KMSC) [3]. Simply put, a
KMSC associates each temporal unit – in this case the values
1, . . . , T – with a probability of event e(i) not occurring up to
that particular time for instance i.

Practically speaking, this re-representation will take the
form of a vector y(i) ∈ [0, 1]T , where the indices t̃ ∈
{1, . . . , T} denote the temporal units and the entries y

(i)

t̃
the

corresponding probabilities.

We adopt the re-representation procedure outlined in Chi
et al. [4] to create y(i), which can be expressed as

y
(i)

t̃
=


1 if t̃ < t(i)

0 if t̃ ≥ t(i) & e(i) = 1

1− P (e
(i)

t̃
= 1|e(i)

t̃−1
= 0) if t̃ ≥ t(i) & e(i) = 0

(1)

where P (e
(i)

t̃
= 1|e(i)

t̃−1
= 0) denotes the conditional probabil-

ity of event e occurring at t̃ given that e has not occurred at
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t̃− 1. Therefore, for patients whose outcomes are known, y(i)

contains values of 0 and 1 only, whereas a censored patient’s
vector becomes an estimation of survival probability at the
indexical location t̃ = t(i).

C. Predicting Individual KMSC

Ultimately, the goal of this paper is to learn a hypothesis
g∗ ∈ G, belonging to some [currently] arbitrarily defined
hypothesis class G, that most accurately predicts patient-
specific KMSCs. Formally, this problem can be written as

g∗ = arg min
g∈G

{
L
(
y(i), g(x(i))

)
: i = 1, . . . , n

}
(2)

where L(·) denotes an arbitrary loss function that measures
the disparity between the predicted y(i) (in the future denoted
ŷ(i)) and the known y(i).

In this work, we define our hypothesis class G to be both
shallow and deep neural networks, the specific architecture of
which is elaborated on further in this section, with parameter-
ization discussed in the experiments section. We characterize
shallow architectures as having one hidden layer and deep
architectures as having more than one hidden layer.

1) Output Smoothing: Neural networks are constructed
in layer-wise fashion, with each layer consisting of nodes.
The inputs are viewed as the first layer, followed by any
number of hidden layers. The last of these hidden layers
is connected to the output layer. The nature of the output
layer is unique to the problem of predicting KMSCs. First,
the output nodes are ordered. That is, we have a predicted
probability for each of the t̃ = 1, . . . , T , where nodeout

t̃
is

ordered before nodeout
t̃+1

because t̃ temporally comes before
t̃ + 1. More importantly, however, the output elicited from
these nodes should strictly decrease in temporal order. In
other words, we expect output(i)

t̃
≥ output

(i)

t̃+1
. Intuitively,

even though a patient may have recovered from their disease,
one would never expect the probability of survival to go up.
However, because the loss function L(·) typically produces a
single value representing the loss across all nodes, the desired
strictly decreasing output among temporally ordered output
nodes cannot be guaranteed. Therefore, we define a smoothing
procedure Smooth(output(i)), given by

ŷ
(i)

t̃+1
= min{output(i)

t̃
, output

(i)

t̃+1
} for t̃ = 1, . . . , T (3)

which guarantees that the output elicited from the use of a
trained model produces strictly decreasing outputs.

D. Geographic Feature Representation

While we are ultimately concerned with producing a g that
elicits the most accurate predictions, the niche of this work is
to:

1) Show whether geographic-based features improve the
quality of predictions.

2) Determine whether a simple binary representation or
a richer representation (defined shortly) leads to better
predictions.

3) Experimentally quantify the extent of such improvements.

We outline the details of our experiments and data in the
next section, where two geographic representations will be
explored: a simple binary representation (SBR) and a richer
representation produced via spectral analysis (RR-SA).

1) Simple Binary Representation: The simple binary repre-
sentation (SBR) is a minimalist representation, involving only
(a) determination of instance i’s discrete geographic entity
membership and (b) a binary re-representation of such mem-
bership (otherwise referred to as one hot encoding), producing
a sparse vector with a 1 in the indexical location corresponding
to the geographic entity of which i is a member, and 0s in all
other locations.

To be as general as possible we assume that the current
geographic features for each instance i, denoted x

(i)
z , can be

used to obtain the single discrete geographic unit of which i is
a member. As an example, in our experiments, we use ZCTA
(zipcode tabulation area) as our discrete geographic unit.

To formalize the notion of eliciting discrete geographic unit
membership, let

x
(i)
b = Γ(x(i)

z ,M) (4)

where Γ(·) is a function that transforms the geographic feature
values of instance i to an ID value, denoted x(i)

b , representing
the single geography entity in a map M (defined shortly) that
i is a member of. Depending upon the geographic information
encapsulated by x

(i)
z , the function Γ(·) and map M may take

on different forms.

In this work our geographic features are (lat,lon) coordinate
pairs. Therefore, we provide a specific definition (Definition
1) outlining the map M that makes use of (lat,lon)-specified
geography.

Definition 1. Define M to be a map, given by

M = {(keyl, valuel)}pl=1 (5)

where keyl is the unique postal code of geographic unit l and
valuel is an ordered set of (lat,lon) coordinate pairs denoting
the bounding geographic region of l.

Map M is a continuous geographic region, characterized
by{
∀l∃l′ : valueql = valuejl′ for l, l′ ∈ {1, . . . , p} & l 6= l′

}
(6)

where valueql = valuejl′ , (latql = latjl′) ∩ (lonql = lonjl′ ).

Given our definition of M,Γ(·) is a function that deter-
mines whether a point, given by x

(i)
z , is on the interior of each

ZCTA in M. When the ZCTA having x
(i)
z in the interior is

found, x(i)
b is set equal to the ZCTA’s identifier. A binarization

procedure (one hot encoding), denoted Bin, is applied to x(i)
b ,

thus producing a sparse vector representation.

Figure 2 illustrates the network architecture using the SBR
methodology.

While we expect the addition of SBR features to elicit a
hypothesis having some predictive performance improvement
over a hypothesis employing only non-geographic features,
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Input node

Hidden node
Output node

(logistic)

SBR Feats

Fig. 2: SBR neural network architecture.

richer representations that better capture the continuous nature
of the defined geographic region hold greater promise.

2) Learning a Rich Geographic Representation: To obtain
richer geographic features, we adopt a spectral clustering-
based approach (spectral analysis) to geographical feature re-
representation. At a high level, this method first computes
the geographic adjacency of the discrete entities that comprise
M, thus producing an adjacency matrix. Spectral analysis is
then performed on this matrix. Spectral analysis involves first
solving for the eigenvalues and eigenvectors of the adjacency
matrix. Second, the top (i.e., largest) k eigenvalues are used to
select the top k corresponding eigenvectors, forming a p × k
matrix. The p rows correspond to the p geographic entities
(one row corresponds to one of the p geographic entities). The
k values associated with each entity are then used as predictive
input features.

To express this procedure more formally, let ZZZ = Adj (M)
denote the adjacency (i.e., affinity, similarity) matrix, where
the l, v-th entry corresponds to the geographic adjacency
relationship between the l-th and v-th discrete geographic
entities, which is given by

[ZZZ]l,v =

{
1 if Common(valuesl, valuesv) = True

& l 6= v
0 otherwise

(7)

where the function Common(·) evaluates whether valuesl and
valuesv share a common element. In the context of the M
described by Definition 1, Common(·) determines whether or
not valuesl and valuesv have at least one coordinate pair in
common.

Spectral clustering is performed by doing qlabel =
kMeans (QQQspec), where kMeans(·) assigns one of k cluster
labels to each of the p column elements using the k-means
clustering algorithm, and where

QQQspec = Topk (QQQ,λλλ) . (8)

The function Topk(·) finds the largest values in λλλ, selects the
corresponding columns in QQQ, and forms the QQQspec ∈ Rk×p
submatrix. The matrix QQQ, composed of eigenvectors, and
vector λλλ, composed of eigenvalues, are obtained by solving
the system of equations given by

ZZZQQQ = λλλQQQ. (9)

Practically speaking, the column-wise elements of QQQspec are
used as k geographical features when learning g – this is

spectral analysis – and the labels qlabel are used for visu-
alization purposes (as in our experiments in the next section)
– this is spectral clustering. In other words, instead of using
a [necessarily] binarized form of the label assignment elicited
from k-means clustering as features, we use the eigenvectors
[on which clustering is performed], which preserves cluster
composition.

To further differentiate spectral clustering from spectral
analysis, we detail the spectral clustering procedure in Al-
gorithm 1. Omission of the final line, highlighted in red,
yields the spectral analysis procedure used to create the rich
representation.

Algorithm 1 Spectral Clustering

1: Obtain adjacency matrix ZZZ using (7).
2: Solve (9) for QQQ and λλλ.
3: Obtain QQQspec as outlined in (8).
4: Apply kMeans clustering to QQQspec to obtain qlabel.

In other words, spectral analysis is a sub-procedure of
spectral clustering, wherein the clustering step is omitted.

Finally, when an instance x is encountered, a procedure
Enrich(xz,M,QQQspec) is called that obtains the k-valued
column of QQQspec that corresponds to the particular geographic
entity that x belongs. Enrich is outlined in Algorithm 2.

Algorithm 2 Enrich Geographic Features EnrichEnrichEnrich

Input: xz,M,QQQspec
1: xb = Γ(xz,M) From (4).
2: Using xb find the l such that xb = keyl : l ∈ {1, . . . , p}.

Output: Return column vector [QQQspec]l

The network architecture that encapsulates the spectral
analysis process is shown in Figure 31.

Input node

Hidden node
Output node

(logistic)

RR-SA Feats

Fig. 3: RR-SA neural network architecture.

III. PREDICTING COLORECTAL CANCER SURVIVAL

In this section we begin by providing an in-depth descrip-
tion of the data used in our experiments, followed by an outline
of the technical details of our experiments. Subsequently, we
discuss experiments and results comparing average predicted
survival curve against average actual survival curve by model,

1In our experiments x
(i)
z are latitude and longitude coordinates.
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as well as mean absolute error by model when the smoothing
procedure is removed.

A. Colorectal Cancer Survival Data for the State of Iowa

Our data were provided by the Iowa Cancer Registry
(ICR), State Health Registry of Iowa (SHRI), and the Iowa
Department of Public Health (IDPH). Each instance represents
a patient who has been diagnosed with colorectal cancer
and whose residence at the time of diagnosis is in the state
of Iowa. The dataset consists of n = 46116 patients and,
initially, m = 71 features. After removing identifiers and
features having a large number of instances with missing
values (% missing > 50%), we were left with m = 26 distinct
features (including unprocessed geographic coordinates). After
binarizing discrete features, m = 386 (excluding geographic
features). When using SBR geographical re-representation,
m = 1364 (386 non geographic features and p = 978 binarized
geographic features), and m = 386 + k when using the
RR-SA geographic representation (where k is parameterized
and therefore user-dependent). When the Kaplan-Meier re-
representation is applied to the dataset, we obtain y(i) vectors
having T = 53 elements, where each element represents the
patient’s current vital status (alive= 1 or dead= 0), or a
probability of survival when an instance becomes censored, as
described by (1). Each t̃ ∈ {1, . . . , 53} represents six months.

The 24 distinct non-geographic features pertain to various
patient-specific characteristics, which can be categorized as
disease-based and demographic-based. Disease-based features
include tumor grade, tumor histology and tumor marker; we
show a histogram of tumor grade in Figure 4. Demographic-
based features include marital status, race, and age at diagno-
sis; we show a histogram of age at diagnosis in Figure 5. These
selected features (age and tumor grade) have been shown to be
indicative of not receiving timely cancer treatment [5], which
we believe will help in predicting cancer survival, although
analysis of such factors is beyond the scope of this work.

Fig. 4: Tumor grade at diagnosis for patients in the state of
Iowa: Years 1989 to 2013.

B. Predictive Setting, Pamaterization and Results

As outlined in the introduction, we wish to address the
following:

1) On average, can colorectal cancer survival curves be
reasonably predicted for patients in the state of Iowa?

Fig. 5: Age of colorectal cancer diagnosis for patients in the
state of Iowa: Years 1989 to 2013.

2) Do geographic features improve the quality of predicted
colorectal cancer survival curves for patients in the state
of Iowa?

3) Do richer geographical feature representations improve
predictive performance more than simpler representa-
tions?

To such an end, we propose to use 10-fold validation where,
for each fold, we find a g∗ for each of the following types of
model:

(i) A model constructed using no geographical features (No
Geo).

(ii) A model constructed using SBR-derived geographical
features, as outlined by Figure 2 (SBR).

(iii) Models constructed using RR-SA-derived geographical
features, as outlined by Figure 3, where the values k =
10, 20, 30, 40 will be explored (RR-SA).

We then examine two different factors:

(a) Each model’s average survival curve prediction on the test
set, taken over the 10 folds, as compared to the actual
average survival curve, taken over all y(i). We devise a
metric we term area between curves (ABC) that measures
the area-wise disparity between the two curves.

(b) Each model’s mean absolute error in the absence of the
output smoothing procedure (described in Section 2.C.1).

1) Model Parameterization: Our models are constructed
using Tensorflow, employing fully connected layers, trained
using sigmoidal cross entropy as the loss function L(·). The
logistic activation function is used for all nodes. Each model
is trained using a maximum of 2500 epochs with a 15% batch
size. While the connectedness of the architecture, activation
function, epochs, and batch size are all tunable parameters,
we elect to focus on finding the optimal number of hidden
layers and corresponding hidden nodes for each layer. Table II
shows the average optimal architecture for each of the models,
taken over the 10 folds.

In Table II we can see that, on average, the optimal
architecture is relatively comparable among all models with
the exception of SBR (and to a degree RR-SA, k = 20).
First, this suggests that the addition of rich geographic features,
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(a) No geo feats
(ABC=14.32, MAE=0.467).

(b) SBR
(ABC=12.60, MAE=0.4512).

(c) RR-SA, k = 10
(ABC=11.41, MAE=0.446).

(d) RR-SA, k = 20
(ABC=12.31, MAE=0.453).

(e) RR-SA, k = 30
(ABC=11.65, MAE=0.445).

(f) RR-SA, k = 40
(ABC=10.77, MAE=0.442).

Fig. 6: Actual vs. Predicted.

Model Avg Optimal Architecture

No Geo 1.5:[83,30]
SBR 1.9:[260,122]
RR-SA, k = 10 1.5:[82,36]
RR-SA, k = 20 1.5:[102,44]
RR-SA, k = 30 1.6:[87,45]
RR-SA, k = 40 1.5:[80,44]

TABLE II: Average optimal architecture by model over the 10
folds (e.g., No geo had 1.5 hidden layers, on average, where
the first layer had 83 nodes , on average, and the second layer
had 30 nodes, on average).

as defined in this work (obtained using spectral analysis), do
not affect the architectural complexity of the model. However,
SBR seems to significantly increase such complexity. This is
somewhat expected, as SBR is represented as a large, sparse
vector, which can be contrasted with the comparatively small
vector of RR-SA.

2) Average Actual vs Average Predicted Survival: The
results comparing the average actual survival curve against the
average predicted survival curve, by model, are presented in
Figure 6. Henceforth, these curves will simply be referred to
as actual and predicted. In these figures we also shade the
region between the actual and predicted curves and provide a
value representing the total area covered by this region. We
will use this value, henceforth referred to as area between

the curves (ABC for short), as a means of comparing the
predictive quality of the six different models (where lower
ABC is better). We also include the mean absolute error for
each model, reported as an average over the 53 outputs.

Comparing Figure 6a with Figures 6b through 6f we first
see that the addition of geographical features has uniformly
improved the quality of the predictions, on average, as can be
observed visually and by comparing ABC values. The MAE
values in parenthesis support this conclusion.

Secondly, comparing Figure 6b with Figures 6c through 6f,
we observe that models using richer geographical representa-
tions (RR-SA) perform better (6c - 6f) than a model trained
using a simple representation (6b), again in terms of both ABC
and MAE.

However, there are also RR-SA model performance differ-
ences depending on the parameterized k value. Interestingly,
there seems to exist a non-linear relationship between k and
performance, with k = 10 outperforming k = 20, and
k = 30 outperforming k = 10; k = 40 performs the
best out of all models. We believe this nonlinear relationship
may be accounted for by the fact that higher values of k
lead to more localized models, yet can also produce sparse,
disjointed clusters. This point is supported by our clustering
visualizations reported in Figure 8 and discussed in Section
III.B.4.

In examining the different predicted survival curves we



774

have a few observations, summarized as follows. First, we
observe that predictive performance increases are mostly re-
alized after the five-year mark. This is, on one hand, intuitive
because predicting survival at times closer to the diagnosis is
easier than predicting survival at later times. On the other hand,
noticeable deviation of the predicted curves uniformly occurs
across all models at or around this five-year mark. Therefore,
model improvement wrought by using richer geographical
representations is realized, by-in-large, at times beyond the
five-year mark. Explanation as to why such a deviation is
present in all models requires further investigation beyond the
scope of this work.

In summary, we find that

1) On average, colorectal cancer survival curves can be
reasonably predicted for patients in the state of Iowa.

2) Geographic features do improve the quality of predicted
colorectal cancer survival curves for patients in the state
of Iowa by 25% (on average).

3) On average, richer geographical feature representations
improve predictive performance by 15% over simpler
representations.

Fig. 7: MAE by model.

3) Model Errors: To further examine model performance
we compare the mean absolute error of each of the models,
measured at each time unit. The results comparing average
error by model type are presented in Figure 7. Note that we
report these error results without using the post-processing
technique described in Section II.C.1 (output smoothing). We
do this to provide a slightly different look at model perfor-
mance over the result presented in Figure 6.

First, it is clear that all models seem to follow a similar
pattern in terms of the observed error by output node, which
is also found when comparing average model output in Figure
6. However, further examination reveals differences in model
performance. Interestingly, SBR appears to outperform the
other models at certain time point predictions toward the
middle and end of the study period (t̃ ≈ 30, 40). This suggests
that SBR may perform better were the smoothing method to
have not been used. However, practically speaking, there is
no circumstance in which one would want to discontinue use
of such a method, but does seem to suggest that, intuitively,
optimization methodology applying greater weight/emphasis to
accurately learning “earlier” output nodes over “later” nodes
may be beneficial.

4) Visualizing Geographic Cluster Assignment: Next, we
briefly discuss the results of visualizing cluster assignment for
k = 10, 20, 30, 40. These results can be observed in Figure 8,
where each color represents a single cluster.

We first note that as k increases, the elicited geographic
regions become more precise, yet maintain geographic con-
tinuity. However, we secondly observe that some ZCTAs
are not adjacent to any other ZCTA having the same clus-
ter assignment. This disjointedness stems from the use of
an adjacency representation of the affinity matrix on which
spectral clustering is performed and is not unexpected. As k
increases it appears that the number of disjointed ZCTAs also
increases. However, we see that the number of continuous
regions also increases. In other words, while disjointedness
seems to increase with k, the desired result of more localized
continuous geographical regions is still achieved. Interestingly,
when k = 40, larger Iowa cities such as Des Moines (central
Iowa) and Iowa City (central-eastern Iowa) begin to emerge.

IV. RELATED WORK

The topics related to and discussed throughout this work
can best be categorized as disease and survival curve predic-
tion and geographic-based predictions and representation.

There are many past works involving the prediction of
diseases. These can be viewed as classification-based [6]–
[12] and survival-based [4], [10], [13]–[16]. The focus of this
work was on survival curve predictions. Such works can be
examined by method, which include Cox proportional hazards
model (CPH) [13], which has been historically used to make
such predictions, decision trees [14], and neural network-
based models [4], [10], [15], [16], which are a more recent
development. However, as Laurentiis and Ravdin [17] point
out, CPH has several caveats as compared to neural network-
based approaches, including the naivety of the proportional
hazards assumption and inability to capture nonlinear feature
interactions. Furthermore, decision trees are constructed using
greedy methodology and do not have the architectural ben-
efits of neural networks. Hence, this work employed neural
networks.

There are also many works focusing on geographic-based
prediction and representation. These works focus on incorpo-
rating geographical features into the predictive process. One
method of representing geography is by fine grain lattice
(i.e., grid) [18]–[20]. Such methods are akin to our SBR
representation and suffer from the same shortcomings. Spa-
tially adaptive filters [21], which can tie a single feature to
geography when creating M, which may be beneficial when
the selected feature is particularly indicative of survival. This
method would, however, still produce a binary feature rep-
resentation, having the accompanying shortcomings discussed
when disclosing SBR. Spectral clustering has been used to
cluster both social networks [22] and for representing geo-
spatial features [23], [24], as in this work, and produces a rich
(i.e., non-sparse) vector of features.

V. CONCLUSIONS AND FUTURE WORK

In this work we explored the use of two different geograph-
ical feature representations – a simple binary representation
(SBR) and a rich representation based on spectral clustering
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Fig. 8: Spectral clustering results for k = 10, 20, 30, 40, where color denotes cluster membership.

(which we term spectral analysis and methodologically refer
to as RR-SA) – to predict colorectal cancer survival curves for
patients in the state of Iowa. We show that (a) survival curves
can be reasonably estimated, although predictive performance
deviates near the five-year survival mark, (b) the use of
geographical features generally lead to better predictions, and
(c) RR-SA trained models outperform those trained using SBR.
Future work will involve exploration of different geographical
representations, particularly those learned in conjunction with
g∗. Additionally, continued exploration of domains and sce-
narios in which SBR and RR-SA geographic representations
provide benefit should be undertaken.
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