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Abstract

The rise of socially targeted marketing suggests that decisions made by consumers can be predicted

not only from their personal tastes and characteristics, but also from the decisions of people who are

close to them in their networks. One obstacle to consider is that there may be several different measures

for “closeness” that are appropriate, either through different types of friendships or different functions

of distance on one kind of friendship. Another is that these decisions are likely to be binary in nature

and more difficult to model with conventional approaches, both conceptually and computationally.

To that end, we present a hierarchical, multiple network-regime auto-probit model (m-NAP) for this

class of data and propose two algorithms for fitting it, based on Expectation-Maximization (E-M)

and Markov Chain Monte Carlo (MCMC). We investigate the behaviors of the parameter estimates

on various sensitivity conditions, such as the impact of the prior distribution and the nature of the

structure of the network, and demonstrate on several examples of correlated binary data in networks.
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1 Introduction

The prevalence and widespread adoption of online social networks have made the analysis of social net-

works, and behaviors of individuals embedded in these networks, an important topic of study in in-

formation systems (Brancheau and Wetherbe, 1990; Chatterjee and Eliashberg, 1990; Premkumar and

Nilakanta, 1994; Agarwal et al., 2008; Oinas-Kukkonen et al., 2010). While past investigations into

behaviour in networks were typically limited to hundreds of people, contemporary data collection and re-

trieval technologies enable easy access to network data on a much larger scale, potentially billions of nodes

and trillions or ties. Analyzing the behavior of these individuals, such as their purchasing or technology

adoption tendencies, requires statistical techniques that can handle both the scope and the complexity of

the data.

The social network aspect is one such complexity. Researchers once assumed that individuals choose

to adopt a product or technology adoption based solely on their own attributes, such as age, education,

and income (Kamakura and Russell, 1989; Allenby and Rossi, 1998), though this could be due both to

a lack of social network data and a mechanism for handling it; indeed, recent developments have shown

that their decisions are associated with the decisions of an individual’s neighbors in their social networks

(Bernheim, 1994; Manski, 2000; Smith and LeSage, 2004). This could be due to a “contagious” effect,

where someone imitates the behavior of their friends, or an indication of latent homophily, in which some

unobserved and shared trait drives the tendency for two people to form a friendship and for each of them

to exhibit this adoption behavior (??); either social property will increase the ability to predict a person’s

adoption behavior beyond their observed characteristics.

Either of these explanations would produce outcomes that, when viewed statically, are correlated

between members of the network who are connected. A popular approach to study this phenomenon is

to use a model with explicit autocorrelation between individual outcomes, defined with a single network

structure term. With the depth of data now available, an actor is very often observed to be a member of

multiple distinct but overlapping networks, such as a friend network, a work colleague network, a family

network, and so forth, and each of these networks may have some connection to the outcome of interest,

so a model that condenses all networks into one relation will be insufficient. While models have been

developed to include two or more network autocorrelation terms, such as Doreian (1989), these do not

allow for the immediate and principled inclusion of binary outcomes; other methods to deal with binary

outcomes on multiple networks, such as Yang and Allenby (2003), instead take a weighted average of

other networks in the system, combining them into one, which has the side effect of constraining the

sign of each network autocorrelation component to be identical, which may be undesirable if there are

multiple effects thought to be in opposition to one another.

To deal with these issues, we construct a model for binary outcomes beginning with the probit frame-

work, which allows us to represent these outcomes as if they are dichotomized outcomes from a multivariate

Gaussian random variable; this is then presented as in Doreian (1989) to have multiple regimes of network

autocorrelation. We first use the Expectation-Maximization algorithm (EM) to find a maximum likeli-

hood estimator for the model parameters, then use Markov Chain Monte Carlo, a method from Bayesian
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statistics, to develop an alternate estimate based on the posterior mean. We also study the sensitivity of

both solutions to the change of parameters’ prior distribution. Preliminary experiments show that the

E-M solution to this model is degenerate, and cannot produce a usable variance-covariance matrix for

parameter estimates, and so the MCMC method is preferred. Our software is also validated by using the

posterior quantiles method (Cook et al., 2006). We ensure that the parameter estimates from the model

are correct by testing first on simulated data, before moving on to real examples of network-correlated

behavior.

The rest of the paper is organized as follows. We discuss the literature on the network effects model

in Section 2. Our two estimation algorithms for the multi-network autoprobit, based on EM and MCMC,

are presented in Section 3. In Section 4 we present the results of experiments for software validation and

parameter estimation behavior observation. Conclusions and suggestions for future work complete the

paper in Section 5.

2 Literature

Network models of behavior are developed to study the process of social influence on the diffusion of a

behavior, which is the process “by which an innovation is communicated through certain channels over

time among the members of a social system ... a special type of communication concerned with the

spread of messages that are perceived as new ideas” (Rogers, 1962). These models have been widely used

to study diffusion since the Bass (1969) model, which is a population-level approach that assumes that

everyone in the social network has the same probability of interacting. Such assumption is not realistic

because given a large social network, the probability of any random two nodes connecting to each other

is not the same; for example, people with closer physical distance communicate more and are likely to

exert greater influence on each other. A refinement to this approach is a model where the outcomes of

neighboring individuals are explicitly linked, such as the simultaneous autoregressive model (SAR). The

general methods of SAR are described in Anselin (1988) and Cressie (1993); we consider simultaneous

autoregression on the residuals, of the form

y = Xβ + θ, θ = ρWθ + ε

where y is a vector of observed outcomes, in this case consumer choice; X is a vector of explanatory

variables; and the initial error term εi follows a normal distribution. Some well accepted MLE solutions

are provided by Ord (1975), Doreian (1980, 1982), and Smirnov (2005).

Most of the current network effect models can only accommodate one network, for example Burt’s

model (1987), and Leenders’ model (1997). However, an actor is very often under influence of multiple

networks, such as that of friends and that of colleagues. So if a research requires investigation of which

effect out of multiple networks plays the most significant role in consumers’ decision, none of these models

are adequate, and a model that can accommodate two or more networks is necessary.

3



Cohesion and structural equivalence are two competing social network models to explain diffusion

of innovation. In the cohesion model, a focal person’s adoption is influenced by his/her neighbors in

the network. In the structural equivalence model, a focal person’s adoption is influenced by the people

who have the same position in the social network. While considerable work has been done on these

models on real data, the question of which network model best explains diffusion has not been resolved.

To approach this, Doreian (1989) introduced two regimes of network effects autocorrelation model for

continuous outcomes. Such a method allows us to investigate effects of two network effects on consumers’

choices, so long as these choices reflect the type of data required. The network autocorrelation model

takes both interdependence of actors and their attributes such as demographics into consideration; these

interdependencies are each described by a weight matrix Wi. Doreian’s model can capture both actor’s

intrinsic opinion and influence from alters in his social network. The model is described as below:

y = Xβ + ρ1W1y + ρ2W2y + ε

where y is the dependent variable; X is a vector of explanatory variables; Ws represent the social struc-

tures underlying each autoregressive regime.

As this model can only have a continuous dependent variable, Fujimoto and Valente (2011) developed

a plausible solution for binary outcomes by directly inserting an autocorrelation term Wy into the right

hand side of a logistic regression:

yi ∼ Be(pi)

log(
pi

1− pi
) = Xβ + ρ

∑
j

Wijyj

Due to its speed of implementation, this method is called “quick and dirty” (QAD) by Doreian (1982).

Although it may support a binary dependent variable and multiple network terms, this model does not

satisfy the assumption of logistic regression – the observations are not conditionally independent, and the

estimation results are biased.

Yang and Allenby (2003) developed a hierarchical Bayesian autoregressive mixture model to analyze

the effect of multiple network effects on a binary outcome. Their model can only technically accommodate

one network effect, composed of several smaller networks that are weighted and added together. This

model therefore assumes that all component network coefficients must have the same sign, and also be

statistically significant or insignificant together. Such assumptions do not hold if the effect of any but

not all of the component networks is statistically insignificant.
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3 Method

We propose a variant of the auto-probit model that accommodates multiple regimes of network effects for

the same group of actors, which we call the multiple network auto-probit model (m-NAP). We then provide

two methods to obtain estimates for our model. The first is the use of Expectation-Maximization, which

employs a maximum likelihood approach, and the second one is a Markov Chain Monte Carlo routine

that treats the model as Bayesian. Detailed descriptions of both estimations are shown in Appendix A

and B.

3.1 Model Specification

The actors are assumed to have different types of network connections between them, where Wi is the ith

network in question. y is the vector of observed binary choices, and is an indicator function of the latent

preference of consumers z. If z is larger than a threshold 0, consumers choose y as 1; if z is smaller than

0, then consumers would choose y as 0.

y = I(z > 0)

z = Xβ + θ + ε, ε ∼ Normaln(0, In)

θ =

k∑
i=1

ρiWiθ + u, u ∼ Normaln(0, σ2In)

z could be represented as a function of both exogenous covariates X and autocorrelation term θ. X is

an n × m covariate matrix, such as [1 X0]. These covariates could be the exogenous characteristics of

consumers. β is a m × 1 coefficient vector associated with X. θ is the autocorrelation term, which is

responsible for those nonzero covariances in the z. θ can be described as the aggregation of multiple net-

work structure Wi and coefficient ρi where i = 1, ..., k. Ws are network structures describing connections

and relationships among consumers. Our model allows multiple competing network effects W. Each Wi

could be defined on the base of relevant theories; for example, W1 describes homophily, W2 describes so-

cial influence and W3 describes structural equivalence; or defined by different network relationship, such

as W1 describes friendship, W2 describes colleagueship, and W3 describes mutual group membership.

The coefficient ρi describe the effect size of correspondent network Wi. By accommodating multiple

networks in an auto-probit model we can compare the effects among competing network structures for

the same group of actors embedded in social networks.

The error of the model is modeled as augmented error. It consists of two parts, ε and u. ε is the

unobservable error term of z and u is the error term of θ. The benefit of such augmented model is that

the latent error term u accounts for the nonzero covariances in the latent variable z, if we marginalize

on θ, all the unobserved interdependency will be isolated, consequently the calculation of the likelihood

function will also be simplified.
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The augmented error results in z, given parameters β, ρ and σ2, a normal distribution with mean Xβ

and variance Q.

z ∼ Normal (Xβ,Q)

where Q = In + σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>. From the specification of Q we can

could sense computationally this is a significant problem.

3.2 Expectation-Maximization Solution

We first develop an approach by maximizing the likelihood of the model using E-M. Since z is latent, we

treat it as unobservable data, for which the E-M algorithm is one of the most used methods. Detailed

description of our solution for k regimes of network effects is in Appendix A.

The method consists of two steps: first, estimate the expected value of functions of the unobserved

z given the current parameter set φ, (φ = {β,ρ, σ2}). Second, use these estimates to form a complete

data set {y,X, z}, with which we estimate a new φ by maximizing the expectation of the likelihood of

the complete data.

We first initialize the parameters need to be estimated.

βi ∼ Normal(νβ,Ωβ);

ρj ∼ Normal(νρ,Ωρ);

σ2 ∼ Gamma(a, b)

where i = 1, ...,m, and j = 1, ..., k.

We then calculate the conditional expectation of parameters in the E-step.

Q(φ) | φ(t) = Ez‖y,φ(t) [logL(φ | z,y)]

= −n
2

log 2π − n

2
log | Q | −1

2

n∑
i=1

n∑
j=1

q̌ij(E[zizj ]− E[zi]Xjβ − E[zj ]Xiβ +XiXjβ
2)

where t is the number of steps, Q = Var(z), Q = In+σ2
(
In −

∑k
i=1 ρiWi

)−1
((

In −
∑k

i=1 ρiWi

)−1
)>

,

and q̌ij is an element in the matrix Q−1.
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In the M-step, we maximize Q(φ | φ(t)) to get βt+1, βt+1 and Σ(t+1) (Σ = σ2) for the next step.

β(t+1) = arg max
β

Q(β | β(t));

ρ(t+1) = arg max
ρ

Q(ρ | ρ(t));

Σ(t+1) = arg max
Σ

Q(Σ | Σ(t))

We replace φ(t) with φ(t+1) and repeat the E-step and M-step until all the parameters converge. Param-

eter estimates from the E-M algorithm converge to the MLE estimates (Wu, 1983).

It is worth noting that the analytical solution for all the parameters is very complicated. For example

parameter σ2, the variance of autocorrelation term θ. Let σ2 = Σ

Σ(t+1) = arg max
Σ

Q(φ | φ(t))

∂ logL

∂Σ
=

∂

∂Σ

(
−1

2
log | Q | −1

2
(z−Xβ)>Q−1(z−Xβ)

)
(1)

The first term at the the right hand side of Equation (1) is:

∂

∂Σ
log | Q | = ∂

∂Σ
log

∣∣∣∣∣∣∣In + Σ

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>
∣∣∣∣∣∣∣

The second term is:

∂

∂Σ
(z−Xβ)>Q−1(z−Xβ)

=
∂

∂Σ
(z−Xβ)>

In + Σ

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

−1

(z−Xβ)

This is not solvable analytically, and numerical methods are needed to get the estimators for all pa-

rameters. As it happens, in its current form the E-M algorithm produces a degenerate solution. This

is because the mode of σ2, the error term of the autocorrelation term θ, is at 0 (see Figure 1), so the

estimated value of it by maximum likelihood is at 0, and produces a singular variance-covariance matrix

estimate using the Hessian approximation. Thus we have to find another solution.

3.3 Full Bayesian Solution

We then turn to Bayesian methods. Since the observed choice of consumer’s is decided by his/her unob-

served preference, such problem has a hierarchical structure, so it is natural to think of using a hierarchical
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Figure 1: Distribution of σ2, variance of θ, estimated by E-M solution

Bayesian method. In addition to the model specification above, the prior distributions for each of the

highest-level parameters in the model are also need to be specified. y is the observed dichotomous choice

and calculated by the latent preference z. The estimation (MCMC method) is done by sequentially gen-

erating draws from a series of full conditional distributions, which are derived from the joint distribution;

the full conditional distributions of all the parameters we need to estimate are presented in the Rotational

Conditional Maximization and/or Sampling (RCMS) table (Thomas, 2009) below. Given the observed

Table 1: RCMS table for hierarchical Bayesian solution

Parameter Density Draw Type

z TrunNormaln(Xβ + θ, In) Single
β Normaln(νβ,Ωβ) Parallel
θ Normaln(νθ,Ωθ) Parallel
σ2 InvGamma(a, b) Parallel
ρi Metropolis step Sequential

choice of consumer, the latent variable z can be generated from a truncated normal distribution with a

mean of Xβ+θ with unit error. The prior distributions of the parameters (shown in Table 1 are generally

adopted from the priors proposed by Smith and LeSage (2004). β follows normal distribution with mean

νβ and variance Ωβ. σ2 follows inverse gamma distribution with parameters a and b. ρ follows a normal

distribution. We then use Markov chain Monte Carlo (MCMC) to generate draws of conditional posterior
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distributions for the parameters in 5 steps. Detailed description of my method, including the conditional

distribution of all parameters, is given in B.

3.4 Validation of Bayesian Software

One challenge of Bayesian methods is getting an error-free implementation. Bayesian solutions often have

high complexity, and a lack of software causes many researchers to develop their own, greatly increasing

the chance of software error; many models are not validated, and many of them have errors and do

not return correct estimations. So it is very necessary to confirm that the code returns correct results.

The validation of Bayesian software implementations has a short history; we use a standard method,

the method of posterior quantiles (Cook et al., 2006), to validate our software. This method again is

a simulation-based method. The idea is to generate data from the model and verify that the software

will properly recover the underlying parameters in a principled way. First, we draw the parameters θ

from its prior distribution p(Θ), then generate data from distribution p(y | θ). If the software is correctly

coded, the quantiles of each true parameter should be uniformly distributed with respect to the algorithm

output. For example, the 95% credible interval should contain the true parameter with probability 95%.

Assume we want to estimate the parameter θ in Bayesian model p(θ | y) = p(y | θ)p(θ), where p(θ) is the

prior distribution of θ, p(y | θ) is the distribution of data, and p(θ | y) is the posterior distribution. The

estimated quantile can be defined as:

q̂(θ0) = P̂ (θ < θ0) =
1

N

N∑
i=1

I(θi < θ0)

where θ0 is the true value drawn from prior distribution; θ̂ is a series of draw from posterior distribu-

tion generated by the software to-be-tested; N is the number of draws in MCMC. The quantile is the

probability of posterior sample smaller than the true value, and the estimated quantile is the number of

posterior draws generated by software smaller than the true value. If the software is correctly coded, then

the quantile distribution for parameter θ, q̂(θ0) should approaches Uniform(0, 1), when N → ∞ (Cook

et al., 2006). The whole process up to now is defined as one replication. If run a number of replications,

we expect to observe a uniformly distribution q̂(θ0) around θ0, meaning posterior should be randomly

distributed around the true value..

We then demonstrate the simulations we ran. Assume the model we want to estimate is:

z = X1β1 + X2β2 + θ + ε;

θ = ρ1W1θ + ρ2W2θ + u

We then specified a prior distribution for each parameter, and use MCMC to simulate the posterior
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distributions.

β ∼ Normal(0, 1);

σ2 ∼ InvGamma(5, 10);

ρ ∼ Normal(0.05, 0.052)

We performed a simulation of 10 replications to validate our hierarchical Bayesian MCMC software. The

generated sample size for X is 50, so the size of the network structure W is 50 by 50. In each replication we

generated 20000 draws from the posterior distribution of all the parameters in φ (φ = {β1, β2, ρ1, ρ2, σ
2}),

and kept one from every 20 draws, yielding 1000 draws for each parameter. We then count the number

of draws larger than the true parameters in each replication. If the software is correctly written, each

estimated value should be randomly distributed around the true value, so the number of estimates larger

than the true value should be uniformly distributed among the 10 replications. We pooled all these

quantiles for the five parameters, 50 in total, and the sorted results are shown in Figure 2. The X-axis

Figure 2: Distribution of sorted quantiles of parameters, β1, β2, ρ1, ρ2, σ
2, 10 replications of posterior

quatiles experiments

is the total replications of the five parameters – 50. The Y-axis is the number of draws larger than

true parameters in each replication. The red line represents the uniform distribution line. As we can

see, the combined results of the five parameters are all uniformly distributed around the true value, thus

confirmed that our Bayesian software is correctly written, hence we can apply our software to experiments

and return correct estimates.
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4 Experiments

We next test the performance of the sampler using prior distributions that are closer to our chosen model

than the trivial priors used to check the model code in order to assess the behavior of the algorithm under

non-ideal conditions. We first choose a prior distribution for ρ with high variance, ρ ∼ Normal(0, 100).

As shown in Figure 3(a), the posterior draws of ρ have strong autocorrelation. To compare, we choose a

narrow prior distribution for ρ, ρ ∼ Normal(0.05, 0.052); the posterior draws for ρ are shown in Figure

3(b), and the autocorrelation is considerably smaller, if not zero. So posterior distribution of ρ is sensitive

to its prior distribution.

(a) ρ ∼ Normal(0, 100) (b) ρ ∼ Normal(0.05, 0.052)

Figure 3: Prior sensitivity for parameter ρ, hierarchical Bayesian solution

With such high autocorrelation between sequential draws, the effective sample size is extremely small.

We therefore use a high degree of thinning to produce uncorrelated draws from the posterior.

We use Yang and Allenby (2003)’s Japanese car data to study the accuracy of parameter estimates

of our Bayesian solution. Such data consists of 857 actors’ midsize car purchase information. The de-

pendent variable is whether an actor purchased a Japanese or not, where 1 stands for purchased and 0

otherwise. All the car models in the data are substitutable and roughly have similar prices. Researchers

are interested in whether the preferences of Japanese car among actors are interdependent or not. The

interdependence in the network are measured by geographical location, where Wij = 1, if consumer i

and j live in the same zip code, and 0, otherwise. Explanatory variables include actors’ demographic

information such as age, annual household income, ethnic group, education and other information such

as the price of the car, whether the optional accessories are purchased for the car, latitude and longitude

of the actor’s location.
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Figure 4: Autocorrelation plot of ρ

The comparison of the coefficient estimates from Yang and Allenby’s code and our Bayesian solution

is shown in Figure 5. In order to make a proper comparison, we set all the network effects except the first

one as 0n,n matrix. Our W1 has the same definition as Yang and Allenby’s W. For the third method,

we add one more network structure W2, the structure equivalence of two consumers. We use Euclidean

distance to measure structural equivalence. In a directed network with non-weighted edges the Euclidean

distance between two nodes i and j is the sum of squared common neighbors between the nodes that i

and j connect to respectively, and from all nodes to i and j respectively. The distance is shown below:

dij =

√√√√ N∑
k=1,k 6=i,j

(Aik −Ajk)2

where Aik = 1 if node i and k are neighbors, and 0 otherwise. The larger d between node i and j, the

less structurally equivalent they are. We get the inverse of dij plus one in order to construct a measure

with a positive relationship with role equivalence: sij = 1
dij+1 .

The comparison is shown in Figure 5. Each box contains the estimates of one parameter from three

methods. The left one is from Yang and Allenby’s, the middle one is from NAP with 1 network, and

the right one is from NAP with 2 networks. All the coefficient estimates, β̂i, ρ̂2, and σ̂2 of the three

methods have similar mean, standard deviation and credible interval. Such results confirm again that
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NAP returns correct estimates of parameters in the model. One thing interesting here is the effect size of

the second network, structural equivalence, has a significant negative effect. Which suggests a diminishing

cluster effect, when the number of people in the cluster gets bigger, the influence is not proportionally

bigger. When the the structural equivalence between two customers is large, meaning they are in the

same community (zip code), and the size, i.e. number of customers, of such community is large, so they

have more common neighbors, thus more same scalar component in the vector.

Figure 5: Coefficient estimates comparison

5 Conclusion

We introduced an auto-probit model to study binary choice of a group of actors that have multiple network

relationships among them. We specified the model in both E-M and hierarchical Bayesian methods, and

developed estimation solutions for both of them. We found E-M solution cannot estimate the parameters

thus only hierarchical Bayesian solution can be used here. We also validated our Bayesian solution by us-

ing posterior quantiles methods and the results show our software returns accurate estimates. Finally we
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compare the estimates returned by Yang and Allenby, NAP with one network effect, cohesion, and NAP

with two network effect, cohesion and structural equivalence, by using real data. Experiments showed all

three returned identical estimates, thus confirmed our software returns correct parameter estimates.

We intend to run our software on more benchmark data with better defined network structure. We

also want to run more experiments with simulated populations to evaluate the properties of the solution.

For example, let W have different features, such as network with randomly distributed edges, clustered

edges, and skewed distributed edges etc.

We want to ensure that the approach can recover variability in the network effect size. Assuming Wθ

has strong effect, we will vary ρ’s true value from small number to large number, and observe whether

our solution can capture the variation.

Additionally, we want to compare our program with QAD, because although people know parameter

estimates returned by QAP is biased, we do not know how different they are from the true value. Finally

we also want to study how multicollinearities between Xs, and between X and Wθ affect estimated

results.
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Appendices

A E-M solution implementation

A.1 Deduction

First, get the distribution of θ.(
In −

k∑
i=1

ρiWi

)
θ = u

θ =

(
In −

k∑
i=1

ρiWi

)−1

u

θ ∼ Normal

0, σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>


Then get the distribution of z|β,ρ, σ2:

z ∼ Normal (Xβ,Q) , where Q = In + σ2

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

The joint distribution of y and z can transformed as:

p(y|z)p(z|β,ρ, σ2) = p(y, z|β,ρ, σ2)

= p(z|y;β,ρ, σ2)p(y) (2)

The right side of equation (2) are two distributions we already have, as shown below.

p(y) =

1√
2π

exp

(
−1

2
(z−Xβ)>(z−Xβ)

)
Φ(Xβ)

I(z > 0)

z|β,ρ, σ2 ∼ Normal(Xβ,Q)

z|y,X;β,ρ, σ2 ∼ TrunNormal(Xβ,Q)

Consider parameter β only,

p(β, z|y) = p(β|z,y)p(z|y)

z|y,X;β ∼ TrunNormal(Xβ,Q)
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Assume Var(z)=1,

L(β|z) =
1√
2π

n∑
i=1

exp

(
−1

2
(zi −Xiβ)2

)
β̂ = (X>X)−1X>R, where R = E[z|θ,y]

Then include parameters, ρ and σ2.

E[z](t+1) = E[z|y,β(t)] = f(β(t),y)

logL(β,ρ, σ2|z) = log p(z|β,ρ, σ2)

= log

n∏
i=1

p(zi|β,ρ, σ2)

=

n∑
i=1

log
1√

2π|Q|
− 1

2
(z−Xβ)>Q−1(z−Xβ)

=

n∑
i=1

log
1√

2π|Q|
−
(

1

2
z>Q−1z− z>Q−1Xβ −X>βQ−1z + X>βQ−1Xβ

)
(3)

If decompose the matrices above as vector product, then:

(3) =
n∑
i=1

log
1√

2π|Q|
− 1

2

n∑
i=1

n∑
j=1

(zi −Xiβ)q̌ij(zj −Xjβ)

=
n∑
i=1

log
1√

2π|Q|
− 1

2

n∑
i=1

n∑
j=1

q̌ij(zizj − ziXjβ − zjXiβ +XiXjβ
2)

where q̌ij is the element in Q̌, and Q̌ = Q−1.

A.2 Expectation step

In the expectation step, get the expected log-likelihood of parameters.

Q(φ|φ(t)) = Ez|y,φ(t) [logL(φ|z,y)]

= E

[
n∑
i=1

log
1√

2π|Q

]
− E

[
1

2
(z−Xβ)>Q−1(z−Xβ)

]

= −n
2

log 2π − n

2
log |Q| − 1

2

n∑
i=1

n∑
j=1

q̌ij(E[zizj ]− E[zi]Xjβ − E[zj ]Xiβ +XiXjβ
2)

where φ is the parameter set, and t is the number of steps.

18



A.3 Maximization step

In the maximization step, get the parameter estimates maximizing the expected log-likelihood. First,

estimate β

β(t+1) = arg max
β

Q(φ|φ(t))

= arg max
β

n∑
i=1

log
1√

2π|Q|
− 1

2
(z−Xβ)>Q−1(z−Xβ) (4)

If directly apply analytical method to solve the Equation (4) above, then:

∂ logL

∂β
=

∂

∂β

(
−1

2
(z−Xβ)>Q−1(z−Xβ)

)
∂

∂β
(z−Xβ)>Q−1(z−Xβ) =

∂

∂β
(z>Q−1z− z>Q−1Xβ − β>X>Q−1z + β>X>Q−1Xβ)

= −z>Q−1X−X>Q−1z + X>Q−1Xβ (5)

Set Equation (5) as 0, then:

−z>Q−1X−X>Q−1z + X>Q−1Xβ = 0

β̂ =
(
X>Q−1X

)−1
X>Q−1R

Second, estimate parameter ρ:

ρ(t+1) = arg max
ρ

Q(φ|φ(t))

Assume ρ = {ρ1, ..., ρk}, without losing any generalizabiliy, ρ1 can be estimated as:

ρ
(t+1)
1 = arg max

ρ1
Q(φ|φ(t))

∂ logL

∂ρ1
=

∂

∂ρ1

(
−1

2
log |Q| − 1

2
(z−Xβ)>Q−1(z−Xβ)

)
∂

∂ρ1
log |Q| = − tr(W1Q

−1)

∂

∂ρ1
(z−Xβ)>Q−1(z−Xβ) =

∂

∂ρ1
(z>Q−1z− z>Q−1Xβ − β>X>Q−1z + β>X>Q−1Xβ)

It is impossible to get the analytical solution for ρi.
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Third, estimate parameter σ2. Let σ2 = Σ

Σ(t+1) = arg max
Σ

Q(φ|φ(t))

∂ logL

∂Σ
=

∂

∂Σ

(
−1

2
log |Q| − 1

2
(z−Xβ)>Q−1(z−Xβ)

)
(6)

The first term at the the right hand side of equation above is:

∂

∂Σ
log |Q| = ∂

∂Σ
log

∣∣∣∣∣∣∣In + Σ

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>
∣∣∣∣∣∣∣

The second term is:

∂

∂Σ
(z−Xβ)>Q−1(z−Xβ)

=
∂

∂Σ
(z−Xβ)>

In + Σ

(
In −

k∑
i=1

ρiWi

)−1
(In − k∑

i=1

ρiWi

)−1
>

−1

(z−Xβ)

This is again not solvable by using analytical method.

B Markov chain Monte Carlo estimation

The Markov chain Monte Carlo method generate chain of draws from the conditional posterior distribu-

tions of parameters. Our solution consists of steps as follows.

Step 1. Generate z, z follows truncated normal distribution.

z ∼ TrunNormaln(Xβ + θ, In)

where In is the n× n identity matrix. If yi = 1, then zi ≥ 0, if yi = 0, then zi < 0

Step 2. Generate β, β ∼ Normal(νβ,Ωβ)

1. define β0, where

β0 =


0

0
...

0


2. define D = hIn, D is a baseline variance matrix, corresponding to the prior p(β), where h is a large
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constant, e.g. 400.

D−1 =


σ2

0 0 . . . 0

0 σ2
0 . . . 0

...
... . . .

...

0 0 . . . σ2
0


Set σ2

0 as
1

400
, a small number close to 0, compared with Normal(0, 1), where σ2

0 = 1

3. Ωβ =
(
D−1 + X>X

)−1

This is because:

z = Xβ + θ + ε

β = X−1(z− θ − ε)

∴ β ∼ Normal
(
X−1(z− θ), (X>X)−1

)
Based on law of initial values, Ωβ =

(
D−1 + X>X

)−1

4. Then νβ can be represented by νβ = Ωβ

(
X>(z− θ) + D−1

)
Step 3. Generate θ, θ ∼ Normal(νθ,Ωθ)

1. First, define B = In −
∑
i

ρiWi

θ =
∑
i

ρiWi + u

(In −
∑
i

ρiWi)θ = u

Bθ = u

θ = B−1u

Let Var(u) = σ2In

Var(θ) = Var(B−1u)

= (B>B)−1σ2In

=

(
B>B

σ2

)−1

2. Then Ωθ =

(
In +

B>B

σ2

)−1

We then add an offset In to
B>B

σ2
. So Ωθ =

(
In +

B>B

σ2

)−1

3. νθ = Ωθ(z−Xβ), since θ = (z−Xβ)− ε
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Step 4. Generate σ2, σ2 ∼ InvGamma(a, b)

a = s0 +
n

2

b =
2

θ>B>Bθ +
2

q0

where s0 and q0 are the parameters for the conjugate prior of σ2, and n is the size of data.

Step 5. Finally we generate coefficient for W, ρi, using Metropolis-Hasting sampling with a random

walk chain.

ρnewi = ρoldi + ∆i,

where the increment random variable ∆i ∼ Normal(ν∆,Ω∆).

The accepting probability α is obtained by:

min

 |Bnew| exp

(
− 1

2σ2
θ>B>newBnewθ

)
|Bold| exp

(
− 1

2σ2
θ>B>oldBoldθ

) , 1


C Solution diagnostic

We run MCMC experiment to confirm there is no autocorrelation among draws of each parameter. In

this experiment, we set the length of MCMC chain as 30,000, burn-in as 10,000, and thinning as 20,

which is used for removing the autocorrelations between draws. The trace plots for the 1000 draws after

burn-in and thinning are listed in the Figure 6 below.

We have 12 plots total. Each plot depicts draws for a particular parameter estimation. The first 9

plots, from left to right and top to bottom, are the trace for the βi, coefficient of independent variables.

Each point represents the value of estimated coefficient β̂i, and the red line represents the mean. We

observe all β̂is are randomly distributed around the mean, and the mean is significant, showing the esti-

mation results are valid. The 10th and 11th plots are for the two estimated network effect coefficients ρ̂1

and ρ̂2. We found both ρ̂i are also significant, and randomly distributed around their means. The only

coefficient showing autocorrelation is σ2.

Note that not all values of ρ1 and ρ2 can make B (B = In−ρ1W1−ρ2W2) invertible. The plot below

shows the relationship between the values of ρ1 and ρ2, and the invertibility of B. The green area is

where B is invertible, and red area is otherwise. If limit draws to the green area, we will have correlated

ρ1 and ρ2. When we draw ρ1 and ρ2 using bivariate normal, there is no correlation between they (see
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Figure 6: Trace plot of a two-network auto-probit model
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Figure 7). We understand the correlation between ρ1 and ρ2 comes from the definition of W1 and W2,

not the prior non-correlation.

Figure 7: Scatter plot of ρ1 and ρ2 on valid region for invertible B,
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