
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

University of California

 Peer Reviewed

Title:
Predicting labels for dyadic data

Author:
Menon, Aditya Krishna; Elkan, Charles

Publication Date:
2010

Publication Info:
Postprints, Multi-Campus

Permalink:
http://escholarship.org/uc/item/8zp3n947

DOI:
10.1007/s10618-010-0189-3

Abstract:
In dyadic prediction, the input consists of a pair of items (a dyad), and the goal is to predict the value
of an observation related to the dyad. Special cases of dyadic prediction include collaborative
filtering, where the goal is to predict ratings associated with (user, movie) pairs, and link prediction,
where the goal is to predict the presence or absence of an edge between two nodes in a graph.
In this paper, we study the problem of predicting labels associated with dyad members. Special
cases of this problem include predicting characteristics of users in a collaborative filtering scenario,
and predicting the label of a node in a graph, which is a task sometimes called within-network
classification or relational learning. This paper shows how to extend a recent dyadic prediction
method to predict labels for nodes and labels for edges simultaneously. The new method learns
latent features within a log-linear model in a supervised way, to maximize predictive accuracy
for both dyad observations and item labels. We compare the new approach to existing methods
for within-network classification, both experimentally and analytically. The experiments show,
surprisingly, that learning latent features in an unsupervised way is superior for some applications
to learning them in a supervised way.

http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/search?creator=Menon, Aditya Krishna
http://escholarship.org/uc/search?creator=Elkan, Charles
http://escholarship.org/uc/item/8zp3n947
http://dx.doi.org/10.1007/s10618-010-0189-3

Data Min Knowl Disc (2010) 21:327–343
DOI 10.1007/s10618-010-0189-3

Predicting labels for dyadic data

Aditya Krishna Menon · Charles Elkan

Received: 30 April 2010 / Accepted: 20 June 2010 / Published online: 27 July 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In dyadic prediction, the input consists of a pair of items (a dyad), and
the goal is to predict the value of an observation related to the dyad. Special cases of
dyadic prediction include collaborative filtering, where the goal is to predict ratings
associated with (user, movie) pairs, and link prediction, where the goal is to pre-
dict the presence or absence of an edge between two nodes in a graph. In this paper,
we study the problem of predicting labels associated with dyad members. Special cases
of this problem include predicting characteristics of users in a collaborative filtering
scenario, and predicting the label of a node in a graph, which is a task sometimes called
within-network classification or relational learning. This paper shows how to extend
a recent dyadic prediction method to predict labels for nodes and labels for edges
simultaneously. The new method learns latent features within a log-linear model in a
supervised way, to maximize predictive accuracy for both dyad observations and item
labels. We compare the new approach to existing methods for within-network clas-
sification, both experimentally and analytically. The experiments show, surprisingly,
that learning latent features in an unsupervised way is superior for some applications
to learning them in a supervised way.

Keywords Dyadic prediction · Collaborative filtering · Link prediction ·
Social networks · Within-network classification · Relational learning

Responsible editors: José L Balcázar, Francesco Bonchi, Aristides Gionis, Michéle Sebag.

A. K. Menon (B) · C. Elkan
Department of Computer Science and Engineering, University of California,
La Jolla, San Diego, CA 92037, USA
e-mail: akmenon@cs.ucsd.edu

C. Elkan
e-mail: elkan@cs.ucsd.edu

123

328 A. K. Menon, C. Elkan

1 Dyadic prediction and within-network classification

Dyadic prediction is the problem of predicting observations associated with dyads,
or pairs of items. Typically, the only information we have about the individual dyad
members is a unique identifier. This means that the input data is not endowed with
explicit features, so we have to learn latent features from the data. The problem can
be viewed as a form of matrix completion by associating the training data with a
matrix whose rows and columns are indexed by the identifiers of the dyad members.
For example, consider the well-studied setting of collaborative filtering. Here, we
wish to predict ratings associated with (user, movie) pairs. The data can be viewed as
a matrix of users by movies, with the entries being the rating for a particular (user,
movie) pair. Henceforth, to ease exposition we will refer to the rows and columns of
a general dyadic prediction task as “users” and “movies”, and the dyad observations
as “ratings.”

Existing work on dyadic prediction has focused on predicting the values of miss-
ing ratings. This is a problem of practical benefit, because for example we can use
it to recommend new movies to a user. A problem that has received less attention is
that of predicting labels associated with users and/or movies. Here, we have labels
associated with some subset of users and/or movies, for example whether the user
is male or female, whether the movie was a commercial success. We would like to
extend these labels to all users and/or movies. In this paper, we show how we can view
this problem as predicting the rating for an extra “movie” corresponding to the label,
but we then argue that it is beneficial to consider alternatives to merely augmenting
the data matrix with this extra “label movie.” We show how to extend a recent flexible
dyadic prediction method to predict labels for users. An important property of the new
method is that it can predict labels even when there is incomplete rating data for users,
which is common for dyadic data. (The presence of missing data is one of several
differences between dyadic label prediction and standard supervised learning.)

One special case where the label prediction problem has been studied previously
is for network data. Here, the input consists of the adjacency matrix of a graph, and
the goal is to predict labels associated with nodes of the graph; this is referred to as
within-network classification or relational learning. Given the connection between
dyadic prediction and within-network classification, our method is also applicable to
the latter problem. An important advantage of our method is that it works in the setting
where there is missing data in the network, corresponding to pairs of nodes for which
we do not know if an edge exists.1

The closest analogs to our approach in the within-network classification literature
are methods based on inferring latent features from the graph structure (Tang and Liu
2009; Zhu et al. 2007). Below, we compare our method with these existing methods
both analytically and experimentally. The results reveal a number of surprising find-
ings. First, there is little benefit in using normalizing transformations of the input
adjacency matrix, which is common practice for problems such as spectral clustering

1 An edge being missing is not the same as it being absent; the latter means known not to be present,
while the former means lack of knowledge about presence.

123

Predicting labels for dyadic data 329

of graph data. Second, it is common for methods to overfit on the training data when
trying to predict missing labels. Third, in some instances it is preferable to learn latent
features in an unsupervised manner, based only on the dyadic observations and not on
the labels.

2 Background and related work

The input in a dyadic prediction problem is a data matrix X ∈ X m×n . Here, m is the
number of users, n is the number of movies, and X is the space of possible ratings
augmented with a special entry “?”, which denotes that a rating is missing. Remember
that we use the words “user” and “movie” and “rating” merely for convenience, with-
out loss of generality. In collaborative filtering problems, usually X = {?, 1, . . . , R},
where R is the number of possible ratings. Let us focus on predicting the missing
entries in X . This is a well-studied problem in machine learning, with the most pop-
ular solution being to consider a matrix factorization of X into the product U V T ,
where U ∈ R

m×k and V ∈ R
n×k for some small integer k. The matrices U and V can

be thought of as latent feature representations of the users and movies respectively.
We choose U, V to optimize the objective

min
U,V

�(X, U V T) + λ

2
�(U, V). (1)

Here, � is a loss function that drives U and V to predict the observed values of X ,
while � is a regularization term to prevent overfitting. There are many choices for �

and �. The simplest are square-loss and L2 regularization:

min
U,V

||X − U V T ||2O + 1

2

(
λU ||U ||2F + λV ||V ||2F

)
.

Here, || · ||F is the Frobenius norm of a matrix (sum of squared entries), and || · ||O
is the Frobenius norm restricted to the entries of X that are not missing, i.e. ||A||2O =∑

i, j I[Xi j �= ?]A2
i j . With this formulation, we are performing a type of regularized

singular value decomposition (SVD) with respect to the observed entries of the matrix
X (Menon and Elkan 2010b).

Link prediction is the problem of predicting whether or not an edge exists between
a pair of nodes in an incompletely observed graph. More generally, the task is to
predict the weight of an edge if it exists. Link prediction can be viewed as a dyadic
prediction problem where the nodes of the graph are users and movies, and a rating
corresponds to the weight of the edge between a pair of nodes; one can let a rating of
0 denote the absence of an edge. Equivalently, however, we can cast dyadic prediction
as an instance of link prediction (Huang et al. 2005). Given a ratings matrix, we can
construct a bipartite graph with nodes corresponding to users and movies. There are
edges only between the user and movie nodes, and the weight of an edge is the value of
the rating for the particular (user, movie) pair. Predicting missing ratings is equivalent
to predicting the edge weights for unobserved edges.

123

330 A. K. Menon, C. Elkan

As an extension to the basic dyadic prediction setting, consider the case where we
also have a label matrix Y ∈ Ym×L , where Y = {?, 0, 1}. The goal is to fill in the
missing entries of Y , or equivalently to predict labels for all the users in the data.
We allow the placement of missing entries to be arbitrary. For example, we do not
require that for each l there exist at least one user i such that Yil �= ?. We use the word
“label” to refer to the vector Yi for a user i , and the word “tag” to refer to an individual
element Yil within the vector, so that each label consists of L (possibly missing) tags.
In general, the prediction problem is multilabel for each i . However, if it is guaranteed
that

∑
l Yil = 1 for all i , then the problem is multiclass for each i . The guarantee

must of course apply to the “true” value of missing tags. In the multiclass case it is
common to encode Yi ∈ {1, . . . , l}. Note that whether multiclass or multilabel, the
label prediction task considered here is a form of transductive learning, because the
goal is only to make predictions for existing users.

The label prediction problem is important for practical applications of dyadic pre-
diction, such as:

– predicting characteristics of users or movies in collaborative filtering datasets;
– scoring suspiciousness or trustworthiness of users in a social network, possibly

based on side-information concerning users; and
– predicting which strains of bacteria will be observed in various food processing

plants (Sarkar et al. 2008).

In the problem of within-network classification, the input is a graph where some nodes
are labeled, and the goal is to predict the labels for all other nodes. Broadly, there are
two main approaches to this problem. The first is to exploit the topological structure
of the graph to infer labels for unobserved nodes. The idea is that if the neighbors of a
node are all positive, that can help us decide with confidence whether to label the node
as positive or not (depending on whether there is a positive or negative neighbor-label
correlation). A popular method along these lines is wvRN (Macskassy and Provost
2003), which assumes that the neighbors of a node capture all the relevant information
for predicting its label, and that the weights of edges correspond to the strength of
influence of one node to another. More sophisticated extensions of this idea involve
random walks on the input graph, where intuitively one assigns the label of a node
based not only on its neighbors but also on nodes that are easy in some sense to reach
from it.

The other broad approach is to learn latent features from the graph, and then feed
these into a supervised learning algorithm. The motivation here is clear: if we were
given predictive features for the nodes, then the problem would simply reduce to
supervised learning. Since we do not have such features, we try to learn them from
the provided link data. The general strategy is:

1. Learn a latent representation U of the nodes from the adjacency matrix X . This is
analogous to the U matrix for dyadic prediction, as in Eq. 1.

2. Let the rows of U be feature representations of each node. Train a multilabel
classifier to predict the labels for the unlabeled nodes.

The underlying idea is that U captures some essential information about the nodes,
which we believe to be predictive for their labels.

123

Predicting labels for dyadic data 331

Given this general formulation, there are at least two ways to conduct the first step.
One can learn U just from the input X , independent of the labels Y ; we call these
unsupervised latent features. Or, one can use both X and Y to influence the matrix U ;
we call these supervised latent features. A popular method using unsupervised latent
features is named SocDim (Tang and Liu 2009). A limitation of this approach is that
we might end up learning features that are predictive for the ratings, but uninformative
for the labels; see the examples discussed in Yu et al. (2006), for example. Super-
vised latent features are used in the supervised matrix factorization (SMF) approaches
applied to network prediction in Zhu et al. (2007), and to latent semantic indexing in Yu
et al. (2005). The idea of these methods is to learn U to jointly optimize least-squares
reconstruction error of X and a one-versus-rest SVM classifier for the labels.

3 Dyadic label prediction: reducing labels to movies

This section shows how labels can be predicted via a reduction that converts them
into additional columns in the data. This reduction has not been analyzed in previous
research. Although the reduction is useful, we explain why a better strategy is to have
a tradeoff between predicting missing ratings and predicting labels.

Recall that for the label prediction problem, the input is X ∈ X m×n with associated
labels Y ∈ Ym×L . Consider first the setting where one learns unsupervised latent
features U from the input X . We then need to learn a classifier to predict Y from U .
Perhaps the simplest (but naïve) solution is to perform multiple linear regression on
Y , ignoring any correlation between the tags. Here, we learn a weight W ∈ R

L×k ,
where L is the number of tags and k the number of latent features, to minimize

min
W

||Y − U W T ||2O + λW

2
||W ||2F .

Now suppose we decide to do this optimization jointly with U , so that the latent
features in U are supervised. This is the essential idea of the SMF approaches of
Zhu et al. (2007) and Yu et al. (2005), which yields the optimization problem

min
U,V,W

||X − U V T ||2O + ||Y − U W T ||2O + 1

2

(
λU ||U ||2F + λV ||V ||2F + λW ||W ||2F

)
.

It has not been pointed out before that this is equivalent to

min
U,V,W

∣∣∣∣∣

∣∣∣∣∣
[

X Y
] − U

[
V
W

]T
∣∣∣∣∣

∣∣∣∣∣
2

O
+ 1

2

(
λU ||U ||2F + λV ||V ||2F + λW ||W ||2F

)
.

Therefore, the joint optimization treats the problem as matrix completion of the
augmented matrix

[
X Y

]
. This can be interpreted as treating the labels as new

“movies” in the dataset, for which we want to make predictions as we do normally
with the ratings of other movies. Notice that this setup exploits the transductive nature
of the problem. We are only interested in making predictions for users known during

123

332 A. K. Menon, C. Elkan

training, and so we use the derived latent features for each user as predictive covari-
ates for the labels. While the latent features depend explicitly on the users with a label
known during training, they also depend implicitly on other users. This is because
the latent features for labelled users are used to derive the latent features for movies,
which are shared by all users.

In the simple unsupervised approach there are L separate regression tasks, one for
each tag. These tasks are completely disjoint, and so the results for one task do not
affect those of another. However, importantly, this is not true in the joint optimiza-
tion problem. The reason is that we are learning U jointly with W . Therefore, there
are implicit interactions between the weights of the tags, because they need to be
predictive for the rest of the data matrix. So, supervised latent features can capture
interactions between different tags, and the supervised approach does not assume the
tags are independent.

The reduction of labels to movies suggests an extension of existing dyadic prediction
methods to predict labels for users. However, there are important caveats concerning
this approach. First, one needs to be clear about the ultimate objective. Above, the joint
optimization assumes that we want to reconstruct the augmented matrix, which means
that mispredicting the labels is equally as bad as mispredicting the ratings. However,
in some settings our ultimate goal might be only the accuracy of predicting the labels,
with the reconstruction error of the data matrix irrelevant. The data matrix in this
case is just an incomplete training set for which we are trying to predict some labels.
Therefore, what we really want is a user-controllable tradeoff, μ, between minimizing
the reconstruction error and minimizing the label training error, as suggested in the
context of supervised latent semantic indexing (Yu et al. 2005):

min
U,V,W

μ ||X − U V T ||2O + (1 − μ)||Y − U W T ||2O

+1

2

(
λU ||U ||2F + λV ||V ||2F + λW ||W ||2F

)
. (2)

Second, one needs to decide how to make predictions for the test data. Does one use
the learned weights W , or train a classifier on the learned U in a second stage? The
latter is the approach discussed earlier in the context of SocDim, except that U is now
learned in a supervised manner, and so can be expected to be predictive for the labels
Y . In preliminary experiments, we found that learning a separate classifier gives better
performance than using the learned W , so we follow this approach.

4 Latent feature log-linear (LFL) model to predict labels

The discussion above focuses on square-loss for reconstruction and label prediction
error, and assumes that we decompose the data matrix as X = U V T . However, the
analysis holds for any choice of loss function and any valid decomposition. Equation 2
may be expressed more generally as

123

Predicting labels for dyadic data 333

min
U,V,W

μ�Recon(X, U, V) + (1 − μ)�Label(Y, U, W)

+1

2

(
λU ||U ||2F + λV ||V ||2F + λW ||W ||2F

)
.

Here, �Recon is the loss function for the reconstruction of the data matrix, while �Label
is the loss function for the label prediction.

The dyadic prediction technique we use in this paper is the latent feature log-linear
model (LFL) proposed in Menon and Elkan (2010a). Using this mode is motivated by
the same goals as in the context of dyadic prediction. Briefly, we want to have well-cal-
ibrated probabilities for each of the ratings, and to use side-information for the users
and movies when it is available. Side-information refers to extra features in addition
to unique user/movie identifiers. It can be useful both for achieving higher predictive
accuracy, and also for data understanding; e.g. one can discover if the education level
of a user influences his suspiciousness label.

The LFL model is as follows. Suppose the input X ∈ R
m×n has ratings in

{1, . . . , R}. We keep sets of weights Ur ∈ R
m×k and V r ∈ R

n×k for each rating.
Note that for each rating r there are separate matrices Ur and V r . We use the log-
linear model

p(r |i, j; U, V) = eUr
i (V r

j)T

∑
r ′ eUr ′

i (V r ′
j)T

for the conditional probability of rating r given user i and movie j . The notation Ur ′
i

means row i of the matrix Ur ′
, while (V r ′

j)T means the transpose of row j of the

matrix V r ′
.

The reconstruction E(X) of the data matrix has entries

E(X)i j =
∑

r

r · p(r |i, j; U, V)

i.e. the predicted value is the expected value under the probability distribution.
We perform optimization using either log-likelihood or mean-squared error (MSE).
For log-likelihood, the objective is

�Recon(U, V) =
∑

(i, j)∈O
log

e
U

Xi j
i

(
V

Xi j
j

)T

∑
r e

Ur
i

(
V r

j

)T + 1

2

(∑
r

λU ||Ur ||2F + λV ||V r ||2F
)

where in a slight abuse of notation, O denotes the set of observations in the input. For
MSE, the objective is

�Recon(U, V) = ||X − E(X)||2O + 1

2

(∑
r

λU ||Ur ||2F + λV ||V r ||2F
)

.

123

334 A. K. Menon, C. Elkan

MSE is more appropriate when the number of ratings R > 2, since we need to enforce
the ordinal structure of the ratings: predicting a rating of 1 incorrectly as 5 is worse
than predicting it as 2. For binary ratings, R = 2, and for nominal (unordered) ratings,
log-likelihood is an appropriate choice.

The LFL model can be applied to network data as well. To see how to adapt it to
the specifics of the problem at hand, define the probability model

p(y|i, j; U, V,�) = e
U y

i �i j

(
V y

j

)T

∑
y′ e

U y′
i �i j

(
V y′

j

)T .

We can constrain the latent features depending on the nature of the input:

– For general dyadic data (m �= n), we let � = I . This is valid because we can think
of the low-rank approximation here as following the singular value decomposition
(SVD), for which � � 0. So, we can define U ′ = U�1/2 and V ′ = V �1/2, thus
absorbing � into the latent factors.

– For asymmetric network data (m = n), we set V = U but let � be an arbitrary
dense matrix, as suggested in Zhu et al. (2007). Setting V = U is justified because
it enforces that both users and movies lie in the same latent space.

– For symmetric network data, we set V = U and � = I . This is justified because
for a symmetric matrix, the SVD of X = U�U T , and as with the general dyadic
case, � may be absorbed into U .

Finally, when applied to the binary tags in the matrix Y with log-likelihood as the loss
function, the LFL performs regularized logistic regression on the observed tags:

�Label(Y, U, W) =
∑

(i,l)∈O

eYil
(
W T

l Ui
)

1 + eW T
l Ui

+ λW

2
||W ||2F .

Notice that it is also possible to predict tags in the matrix which are qualitatively dif-
ferent from the ratings in X . For example, if the tags are real-valued, we can replace
�Label by a regularized linear or nonlinear regression objective.

Having defined the general LFL model, we note its salient properties:

– Supervised latent features As discussed earlier, learning latent features in an unsu-
pervised manner ignores the label information, which means that the latent features
may be uncorrelated with the labels and thus yield poor accuracy. The LFL model
learns features to predict the labels and ratings jointly.

– Flexible about data properties It is desirable for a method to work for a range of
different data types. For example, in the context of within-network classification,
we would like for methods to work on both symmetric and asymmetric graphs.
The LFL has this flexibility.

– Handling missing data For a general dyadic prediction task, we do not have obser-
vations for all dyads. In such settings, it is conceptually still possible to make

123

Predicting labels for dyadic data 335

Table 1 Comparison of latent feature based methods for label prediction

Item LFL SMF SocDim

Supervised latent features? Yes Yes No

Asymmetric graphs? Yes Yes No

Missing data? Yes No No

Finds latent features of? Data Data Modularity

Single minimum? No No Yes

LFL is the model proposed in this paper

predictions about the labels of users and movies. Therefore, it is desirable for
a method to handle missing data in the input matrix, which the LFL achieves
seamlessly.

Table 1 summarizes the presence or absence of these qualities in the LFL model and
in previous latent feature methods for within-network classification. We also note of
what exactly the methods find latent features, and whether they are subject to local
minima; these issues are discussed more in the next section.

5 Comparing the latent feature methods

This section looks more closely at three latent feature methods: the SocDim (Tang and
Liu 2009) and SMF (Zhu et al. 2007) methods in the within-network classification
literature, and the LFL method described above.

We start by comparing their objective functions. As discussed in Sect. 2, and noted
in Table 1, the key difference between SocDim and the SMF and LFL methods is that
the former uses unsupervised latent features. But are there other differences? To study
this question, we look at the objective functions for all three methods in the unsu-
pervised setting i.e. we make SMF and LFL disregard the labels during the training
phase. Since SocDim and SMF were designed with network data in mind, assume that
X ∈ {0, 1}n×n is the adjacency matrix of an unweighted graph. Note that there are no
missing entries for the purposes of this discussion. Further, since SocDim assumes that
the network is symmetric (i.e. the graph is undirected), suppose that X = X T. This
assumption is needed because it makes the eigenvalues of X be real. The objective
functions are then:

– SocDim objective The first step of the SocDim method is an eigendecomposition
of the modularity matrix of X , defined as Q(X) = X − 1

2|E |ddT , where d is a
vector of the node degrees and |E | is the number of edges in the graph. These
eigenvectors are then used as a latent feature representation of the nodes in the
graph. Since the eigenvectors of a symmetric matrix equal its singular vectors, up
to a sign flip, we can reformulate the first step as

min
U,�

||Q(X) − U�U T ||2F .

123

336 A. K. Menon, C. Elkan

When � is constrained to be diagonal, the optimal solution U∗ of this equation
corresponds to the eigenvectors of Q(X) up to rotation.

– SMF objective In SMF, the objective function is that of Eq 2, except that we assume
that there is no missing data. When we set μ = 1, corresponding to no influence
of the labels on the training process, the objective is

min
U

||X − U�U T ||2F + λU

2
||U ||2F .

– LFL objective For the case of binary ratings, the LFL model reduces to

p(y = 1|i, j; U, V) = σ
(

Ui�i jU
T
j

)

where σ(·) is the sigmoid function. For log-likelihood, the objective is quite
different from the other methods. But optimizing MSE yields

min
U

||X − σ(UU T)||2O + λU

2
||U ||2F .

We see that the three methods are all instantiations of the following general problem:

min
U,�

|| f (X) − g(U,�)||2F + λU

2
||U ||2F .

For SocDim, f (X) = Q(X) and g(U,�) = U�U T ; for SMF, f (X) = X and
g(U,�) = U�U T ; and for LFL, f (X) = X and g(U,�) = σ(UU T). In this
general scheme, we consider a transformed version of the data matrix, and then con-
sider a low-rank approximation that is itself passed through a transformation.

SocDim and LFL differ in terms of which of the components, the data matrix or
the low-rank approximation, they choose to transform. It is not clear a priori which
scheme is more useful. In the case of SocDim versus LFL, the transforms have dif-
ferent ostensible goals. The point of the sigmoidal transform is simply to make the
entries lie in [0, 1]. The point of the modularity transform is to normalize the degree
distributions of the nodes in the network, so that high degree nodes do not overshadow
the rest of the graph. Interestingly, in collaborative filtering one can do something
similar to the regularization part of the objective (Weimer et al. 2008):

min
U

||X − σ(UU T)||2O + λU

2
tr[U T DU].

Here, D = diag(1/
√

d1, . . . , 1/
√

dn), where di = ∑
j Xi j . This form of regulariza-

tion is used in our implementation of LFL.
SocDim and SMF perform essentially the same optimization, except that SocDim

works on the modularity matrix. Of course, one can consider a variant of SMF which
operates on the modularity matrix; does that imply that the solutions of the two meth-
ods will be similar when μ = 1−ε for ε small? This is not necessarily true, because of

123

Predicting labels for dyadic data 337

the nature of the optimization process. In SocDim, we optimize the objective function
using an analytic solution, namely the eigenvectors of the modularity matrix. In SMF
for μ < 1, we have to resort to gradient descent to optimize the objective function,
since there is no closed form solution.2 But the objective is not jointly convex in U
and �, so one can only find a local minimum. This means that even for μ close to 1,
one may not exactly recover the eigenvectors of the data matrix. So, an advantage of
SocDim is that it is immune to issues of local minima, albeit at the cost of being more
expensive for large datasets, since it involves an eigendecomposition, whose runtime
is superlinear in the size of the data matrix.

Another question raised by the analysis above is the impact of the choice of f (X).
Does choosing f (X) = X for SocDim give noticeably worse results? Is the use of
the modularity Q essential, or can one use other popular transformations, such the
normalized Laplacian from the spectral clustering literature, L = I − D−1/2 X D−1/2,
where D is a diagonal matrix of node degrees. It is also interesting to see what impact
these transforms have on the SMF approach.

We have claimed thus far that it is desirable to learn supervised latent features
from the data, as this should give better predictive performance. This claim is intui-
tively reasonable, but there are two issues to be mindful of. First, one has to choose
numerous parameters for a supervised factorization, the three regularization parame-
ters λU , λV , λW , and the tradeoff parameter μ. Cross-validation is needed to choose
these, which is expensive. Second, introducing a dependence of U on the labels also
introduces a risk of overfitting on the training labels. Clearly when μ = 0 the solution
is useless, because it just tries to learn latent features that explain the labels of the
known training examples. But even for nonzero μ, overfitting is possible, especially
when the tags are sparsely populated, which is common for many multilabel problems.
The similar issue is mitigated in standard collaborative filtering using �2 regularization
of the weights, but in the label prediction problem there is an interplay between the
tradeoff μ and the regularizer λW . These issues are explored in the experiments below.

6 Experimental design

This section explains the design of our experiments, covering first the issues to
be explored, next the datasets to be used, and last the methods to be compared.
The following questions are addressed in the experiments.

– The value of supervised latent features As discussed in the previous section, while
supervised latent features have an intuitive advantage over their unsupervised coun-
terparts, it is important to compare the two empirically. In particular, does super-
vised training of latent features exacerbate the problem of overfitting?

– The impact of missing edges For general dyadic prediction problems, there are
often many missing dyadic observations. Existing methods for predicting labels
for network data, and in particular the ones based on learning latent features, do
not deal with this issue. But can we just treat the missing observations as being

2 When we have labels for all the data, a closed form solution in terms of a generalized eigenvector is
possible (Yu et al. 2005).

123

338 A. K. Menon, C. Elkan

edges with weight 0? Does this have a noticeable impact on the accuracy of label
prediction? How does this simple approach compare with the LFL approach, which
is designed to handle missing dyadic observations?

– The value of data transformation The SocDim method involves learning latent fea-
tures from the modularity matrix of the data. The idea of learning latent features
from a transformation of the original data matrix has been studied in the spec-
tral clustering literature. An interesting question is whether performance is worse
when the raw data matrix is used to learn latent features. If so, how do we choose
between different transformations, such as the modularity and the Laplacian?

– Dyadic vs network data As discussed earlier, there is a two-way reduction between
dyadic prediction and link prediction. Therefore, dyadic prediction methods such
as LFL can be applied to network data. However, it also follows that link prediction
methods can be applied to general dyadic prediction data, such as collaborative
filtering datasets. A natural question is whether, all else being equal, in particular
with no missing data, both types of method perform equally well.

Experiments use the following datasets, each possessing very different properties.

– blogcatalog. This dataset comprises links between bloggers in the BlogCat-
alog directory (Tang 2010). The labels provided are the stated interests of users,
which are divided into 39 possible categories. A user may have each interest inde-
pendently, so this is a multilabel problem. This is an example of a network dataset
where the goal is to use known links to predict something useful about the nodes.
Due to time constraints, we focus on a subset of the dataset comprising a random
selection of 2,500 bloggers. Preliminary results on the full dataset suggest similar
patterns to the ones observed in our results.

– senator. This dataset comprises roll call data from the 109th session of the
United States senate. It consists of the votes of 101 senators concerning 315 bills,
with possible votes being “Yea” or “Nay.” The dataset was studied previously in
Blei and McAuliffe (2010). The data can be thought of as a binary ratings matrix
for senators by bills. The goal is to predict whether or not a senator is a Republican
or Democrat. This particular task is relatively easy, because the voting patterns
of senators are highly predictive of their political affiliation. However, the dataset
is representative of many datasets that are important in political science, where
one is interested in using behavioral records to test hypotheses about the nature of
political dynamics.3

– usps. This dataset consists of handwritten digits represented as grayscale 16×16
images (USPS 2010). The labels for the data are simply the true digits that the
images correspond to. Learning to predict labels here is a standard supervised
learning problem, but we look at the case where some entries are missing, which
corresponds to some subset of pixel values being occluded. For simplicity, we
make the dataset binary so that pixel values are either black or white. This dataset

3 A few entries in the senator dataset are missing, which raises the point that even well-curated datasets
often do have missing entries. In general it is important to have a principled way to handle these. For this
dataset missing votes are treated as “Nay” for methods that cannot handle missingness directly. The impact
of this choice is small for all methods.

123

Predicting labels for dyadic data 339

shows how a more difficult version of a standard supervised learning task may be
solved by formulating it as a dyadic label prediction problem.

The experiments compare three latent feature methods for within-network classifica-
tion, namely SocDim, SMF, and the new LFL model explained above. We implement
SMF and LFL ourselves, and use the code for SocDim provided by Tang (2010).

For all methods, the learned latent features are passed through a linear SVM to
get final label predictions. We use LibLinear for the SVM implementation (Fan et al.
2008). Following Tang and Liu (2009), for multilabel data we assume that the number
of labels are known, and we measure how well the predicted score for each tag agrees
with the true label. Agreement is measured using the F1 micro and macro scores,
which for true tags yil and predictions ŷil are defined as

Micro = 2

∑
i,l yil ŷil∑

i,l yil + ŷil

and

Macro = 2

L

∑
l

∑
i yil ŷil∑

i yil + ŷil
.

For the multiclass datasets, 0–1 error is the performance measure. In all experiments,
we perform cross-validation to choose the regularization and μ parameters, and report
accuracy on the training and test set to study whether overfitting is a serious issue.

An issue to note is that the senator and usps datasets are not ostensibly in the
form of a graph. But as discussed in Sect. 2, we can transform general dyadic data into
a bipartite graph, so this representation is used when training the SocDim and SMF
methods on these datasets.

7 Experimental results

Results on the blogcatalog dataset are presented in Table 2, which shows F1 micro
and macro scores for both training and test data; higher scores are better. The reported
scores are for the parameter settings that result in the best total test set score over all
folds of cross-validation. The number of latent factors k is 1, 25, or 100, denoted by a
subscript for the method. Note that the LFL method assumes the input data is discrete,
so it cannot be applied to the Modularity and Laplacian matrices; hence the “N/A”
entry in the table.

The blogcatalog results reveal some surprising facts. First, all methods exhibit
a strong degree of overfitting, especially as measured by the Macro score. This suggests
that �2 regularization alone is not sufficient to prevent overfitting for label prediction
problems. (Preliminary experiments indicate that overfitting is even worse on the AUC
measure.) Second, neither SocDim and SMF benefits from working with the Laplacian
or modularity matrix. In fact, we achieve the best performance with SMF on the raw
adjacency matrix. Third, LFL is outperformed by SocDim and SMF. This suggests

123

340 A. K. Menon, C. Elkan

Ta
bl

e
2

10
-f

ol
d

C
V

re
su

lts
of

va
ri

ou
s

m
et

ho
ds

on
th

e
b
l
o
g
c
a
t
a
l
o
g

da
ta

se
t

R
aw

da
ta

M
od

ul
ar

ity
L

ap
la

ci
an

T
ra

in
Te

st
T

ra
in

Te
st

T
ra

in
Te

st

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

M
ic

ro
M

ac
ro

So
cD

im
1

0.
18

01
0.

03
21

0.
17

67
0.

02
93

0.
16

21
0.

03
09

0.
15

96
0.

02
96

0.
16

28
0.

02
96

0.
13

95
0.

01
95

So
cD

im
25

0.
23

88
0.

12
98

0.
20

43
0.

07
01

0.
23

68
0.

10
44

0.
21

05
0.

06
21

0.
20

66
0.

10
22

0.
16

32
0.

03
67

So
cD

im
10

0
0.

40
17

0.
39

54
0.

26
30

0.
14

62
0.

38
90

0.
36

19
0.

26
71

0.
13

46
0.

28
24

0.
26

74
0.

18
69

0.
07

22

L
FL

1
0.

17
95

0.
03

12
0.

17
75

0.
03

11
N

/A

L
FL

25
0.

21
89

0.
10

06
0.

18
72

0.
05

95

L
FL

10
0

0.
36

97
0.

41
84

0.
20

01
0.

10
61

SM
F 1

0.
17

91
0.

02
88

0.
14

74
0.

02
13

0.
18

26
0.

03
23

0.
17

07
0.

02
24

0.
16

08
0.

02
75

0.
15

85
0.

02
62

SM
F 2

5
0.

24
49

0.
14

31
0.

19
73

0.
07

50
0.

24
22

0.
12

75
0.

21
26

0.
07

19
0.

20
47

0.
08

68
0.

16
24

0.
03

42

SM
F 1

00
0.

43
60

0.
47

21
0.

28
77

0.
18

22
0.

41
49

0.
41

41
0.

28
74

0.
13

55
0.

27
18

0.
24

37
0.

16
67

0.
07

30

T
he

bo
ld

nu
m

be
rs

in
di

ca
te

th
e

be
st

pe
rf

or
m

in
g

m
et

ho
ds

.T
he

y
ar

e
on

ly
re

po
rt

ed
fo

r
th

e
co

lu
m

ns
la

be
lle

d
“T

es
t”

be
ca

us
e

th
at

is
th

e
qu

an
tit

y
of

pr
im

ar
y

in
te

re
st

123

Predicting labels for dyadic data 341

Table 3 10-fold CV results of various methods on the senator dataset

Raw data Modularity Laplacian

Train Test Train Test Train Test
0–1 error 0–1 error 0–1 error 0–1 error 0–1 error 0–1 error

SocDim1 0.0247 0.0284 0.0000 0.0544 0.0238 0.0296

SocDim5 0.0123 0.0284 0.0000 0.0408 0.0119 0.0148

LFL1 0.0132 0.0199 N/A

LFL5 0.0132 0.0132

SMF1 0.0298 0.0321 0.0152 0.0351 0.0222 0.0325

SMF5 0.0000 0.0494 0.0152 0.0351 0.0111 0.0163

The bold numbers indicate the best performing methods. They are only reported for the columns labelled
“Test” because that is the quantity of primary interest

Table 4 10-fold CV results of various methods on the usps dataset

Raw data Modularity Laplacian

Train Test Train Test Train Test
0–1 error 0–1 error 0–1 error 0–1 error 0–1 error 0–1 error

SocDim1 0.1287 0.1304 0.1239 0.1333 0.1297 0.1360

SocDim25 0.0207 0.0190 0.0249 0.0305 0.0255 0.0251

SocDim50 0.0165 0.0174 0.0220 0.0305 0.0202 0.0235

LFL1 0.1435 0.1405 N/A

LFL25 0.0344 0.0324

LFL50 0.0248 0.0311

SMF1 0.1471 0.1444 0.1411 0.1394 0.1676 0.1613

SMF25 0.0205 0.0218 0.0253 0.0255 0.0244 0.0340

SMF50 0.0157 0.0210 0.0215 0.0271 0.0184 0.0292

The bold numbers indicate the best performing methods. They are only reported for the columns labelled
“Test” because that is the quantity of primary interest

that for this problem, there is no benefit in applying the sigmoidal transformation to
ensure that predictions for the reconstruction lie in [0, 1], contrary to expectations.

Results on the senator dataset, presented in Table 3, are markedly different
from those on blogcatalog. First, overfitting is not as strongly manifest, and in
fact sometimes the test error is smaller than the training error. (The small size of the
dataset likely plays a part in explaining this finding.) The LFL method does best on
this dataset, while SocDim and SMF do best when operating on the Laplacian of the
induced bipartite graph. There are instances where SocDim and SMF overfit badly,
achieving a perfect training score. This further emphasizes that overfitting is a difficult
issue for the label prediction task.

For the usps dataset, we first present results training on the entire dataset with no
missing entries. Table 4 shows that all methods do quite well in predicting the labels of
the digits, with SocDim managing the best 0–1 error of 1.7% when trained on the raw

123

342 A. K. Menon, C. Elkan

Table 5 10-fold CV results on the usps dataset with 50% missing pixels

Raw data Modularity Laplacian

Train Test Train Test Train Test
0–1 error 0–1 error 0–1 error 0–1 error 0–1 error 0–1 error

SocDim1 0.1337 0.1352 0.1389 0.1388 0.1261 0.1238

SocDim25 0.0354 0.0300 0.0490 0.0522 0.0516 0.0594

SocDim50 0.0320 0.0344 0.0453 0.0522 0.0470 0.0527

LFL1 0.1452 0.1432 N/A

LFL25 0.0502 0.0472

LFL50 0.0380 0.0424

SMF1 0.1487 0.1471 0.1673 0.1640 0.1415 0.1390

SMF25 0.0448 0.0446 0.0500 0.0440 0.0509 0.0439

SMF50 0.0412 0.0504 0.0518 0.0496 0.0454 0.0447

The bold numbers indicate the best performing methods. They are only reported for the columns labelled
“Test” because that is the quantity of primary interest

Table 6 10-fold CV results on the usps dataset with 90% missing pixels

Raw data Modularity Laplacian

Train Test Train Test Train Test
0–1 error 0–1 error 0–1 error 0–1 error 0–1 error 0–1 error

SocDim1 0.1434 0.1433 0.1475 0.1339 0.1484 0.1622

SocDim25 0.1162 0.1190 0.1306 0.1210 0.1346 0.1470

SocDim50 0.1042 0.1101 0.1242 0.1226 0.1256 0.1438

LFL1 0.1520 0.1568 N/A

LFL25 0.1295 0.1416

LFL50 0.1111 0.1336

SMF1 0.1585 0.1611 0.1671 0.1661 0.1515 0.1406

SMF25 0.1282 0.1401 0.1297 0.1354 0.1364 0.1357

SMF50 0.1166 0.1377 0.1222 0.1346 0.1272 0.1309

The bold numbers indicate the best performing methods. They are only reported for the columns labelled
“Test” because that is the quantity of primary interest

data. It is not surprising that the modularity and Laplacian matrix do not give much
benefit, because it is not clear that the degrees of nodes (corresponding to the number
of pixel values for a particular image) are useful as a normalization of the data.

Table 5 presents results after randomly occluding 50% of pixels. The Laplacian
and modularity matrix here are computed with respect to the observed pixels. For the
SocDim and SMF methods, this corresponds to treating an occluded pixel value as 0,
since that is the dominant class. There is only a mild degradation in the performance
of all methods. Interestingly, SocDim is still superior to LFL, even though the latter
is designed to fill in missing entries of the input matrix.

123

Predicting labels for dyadic data 343

Finally, Table 6 shows results with 90% missing data. As expected, all methods see
a noticeable drop in prediction accuracy. However, SocDim still outperforms the LFL
method, despite not being designed to handle missing data. This robustness to missing
data is surprising and merits further study, although it may merely be an indication
that the prediction task is not difficult.

Acknowledgments The authors thank Lei Tang for gracious help with running the code for SocDim and
for answering several queries regarding the same. The authors also thank David Blei for providing the
senator dataset.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Blei DM, McAuliffe JD (2010) Supervised topic models. Revised version. http://arxiv.org/PS_cache/arxiv/
pdf/1003/1003.0783v1.pdf

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLINEAR: a library for large linear classification.
J Mach Learn Res 9:1871–1874

Huang Z, Li X, Chen H (2005) Link prediction approach to collaborative filtering. In: Proceedings of the 5th
ACM/IEEE-CS joint conference on digital libraries (Denver, CO, USA, June 7–11, 2005), JCDL’05.
ACM, New York, NY, pp 141–142

Macskassy SA, Provost F (2003) A simple relational classifier. In: Proceedings of the second workshop on
multi-relational data mining (MRDM-2003) at KDD-2003, pp 64–76

Menon AK, Elkan C (2010a) Dyadic prediction using a latent feature log-linear model. http://arxiv.org/
abs/1006.2156

Menon AK, Elkan C (2010b) Fast algorithms for approximating singular value decomposition. ACM Trans
Knowl Discov Data. Special issue large-scale data mining: theory appl (to appear)

Sarkar P, Chen L, Dubrawski A (2008) Dynamic network model for predicting occurrences of salmonella
at food facilities. In: Proceedings of the BioSecure international workshop. Springer, Heidelberg,
pp 56–63

Tang L (2010) Social dimension approach to classification in large-scale networks. http://www.public.asu.
edu/~ltang9/social_dimension.html

Tang L, Liu H (2009) Relational learning via latent social dimensions. In: ACM SIGKDD international
conference on knowledge discovery and data mining. ACM, Edmonton, Alberta, pp 817–826

USPS (2010) USPS dataset. Obtained from http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
Weimer M, Karatzoglou A, Smola AJ (2008) Improving maximum margin matrix factorization. In: Euro-

pean conference on machine learning and principles and practice of knowledge discovery in databases.
pp 263–276

Yu K, Yu S, Tresp V (2005) Multi-label informed latent semantic indexing. In: ACM SIGIR conference on
research and development in information retrieval. ACM, Boston, pp 258–265

Yu S, Yu K, Tresp V, Kriegel HP, Wu M (2006) Supervised probabilistic principal component analysis. In:
ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Philadel-
phia, pp 464–473

Zhu S, Yu K, Chi Y, Gong Y (2007) Combining content and link for classification using matrix factor-
ization. In: ACM SIGIR Conference on Research and Development in Information Retrieval, ACM,
Amsterdam, pp 487–494

123

http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.0783v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.0783v1.pdf
http://arxiv.org/abs/1006.2156
http://arxiv.org/abs/1006.2156
http://www.public.asu.edu/~ltang9/social_dimension.html
http://www.public.asu.edu/~ltang9/social_dimension.html
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html

	Predicting labels for dyadic data
	Abstract
	1 Dyadic prediction and within-network classification
	2 Background and related work
	3 Dyadic label prediction: reducing labels to movies
	4 Latent feature log-linear (LFL) model to predict labels
	5 Comparing the latent feature methods
	6 Experimental design
	7 Experimental results
	Acknowledgments
	References

