
48 1541-1672/05/$20.00 © 2005 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

W e b S e a r c h

A Concept-Driven
Algorithm for
Clustering Search
Results
Stanislaw Osiński and Dawid Weiss, Poznań University of Technology

Search engines rock! Right? Without search engines, the Internet would be an enormous

amount of disorganized information that would certainly be interesting but perhaps

not very useful. Search engines help us in all kinds of tasks and are constantly improving result

relevance. So, does even the tiniest scratch exist on this perfect image? We’re afraid so.

Contrary to popular belief, search engines don’t
answer questions. They merely provide fast access
to the information people put on the Web. In fact,
popular search engines, as opposed to query-answer-
ing systems, return Web pages matching the user’s
question rather than the question’s answer. Luckily,
this works most of the time, because people tend to
place questions together with answers. The real prob-
lem arises when the information need expressed by
the query is vague, too broad, or simply ill-defined.
Then the range of covered topics becomes unman-
ageably large, confusing, and of doubtful value to
the user.

Search-results clustering aims to present informa-
tion about the matching documents (see the “Related
Work in Text Clustering” sidebar). It’s like taking a
step backward to grasp a bigger picture—we no longer
care about individual documents, but about some
underlying semantic structure capable of explaining
why these documents constitute a good result to the
query. To find this structure, we set a few goals:

• identify groups of similar documents,
• discover a textual description of the property mak-

ing the documents similar, and
• present these descriptions to the user in document

clusters.

Our approach reverses the traditional order of clus-
ter discovery. Instead of calculating proximity
between documents and then labeling the discovered
groups, we first attempt to find good, conceptually
varied cluster labels and then assign documents to

the labels to form groups. We believe that only the
commercial search engine Vivisimo (www.vivisimo
com) uses a similar order of cluster discovery, but
the details of that algorithm are unknown.

The Lingo algorithm
According to the Collins English Dictionary, lingo

is “a range of words or a style of language which is
used in a particular situation or by a particular group
of people.” Each time a user issues a query on the
Web, a new language is created, with its own char-
acteristic vocabulary, phrases, and expressions. A
successful Web-search-results clustering algorithm
should speak its users’ lingoes—that is, create the-
matic groups whose descriptions are easy to read and
understand. Users will likely disregard groups with
overly long or ambiguous descriptions, even though
their content might be valuable. A Web search clus-
tering algorithm must therefore aim to generate only
clusters possessing meaningful, concise, and accu-
rate labels.

In conventional approaches, which determine
group labels after discovering the actual cluster con-
tent, this task proves fairly difficult to accomplish.
Numerical cluster representations might “know” that
certain documents are similar, but they can’t describe
the actual relationship.

In the Lingo description-comes-first approach,
careful selection of label candidates is crucial. The
algorithm must ensure that labels are significantly
different while covering most of the topics in the input
snippets. To find such candidates, we use the vector
space model (VSM) and singular value decomposi-

The Lingo algorithm

combines common

phrase discovery and

latent semantic

indexing techniques to

separate search results

into meaningful

groups. It looks for

meaningful phrases to

use as cluster labels

and then assigns

documents to the

labels to form groups.

tion (SVD), the latter being the fundamental
mathematical construct underlying the latent
semantic indexing (LSI) technique.1

VSM is a method of information retrieval
that uses linear-algebra operations to com-
pare textual data. VSM associates a single
multidimensional vector with each document
in the collection, and each component of that
vector reflects a particular key word or term
related to the document. (We use “term” to
refer to a single word and “phrase” to refer to
a sequence of terms.) This lets us represent a
set of documents by arranging their vectors
in a term-document matrix. The value of a
single component of the term-document
matrix depends on the strength of the rela-
tionship between its associated term and the
respective document.

Unlike VSM, LSI aims to represent the
input collection using concepts found in the
documents rather than the literal terms
appearing in them. To do this, LSI approxi-
mates the original term-document matrix

using a limited number of orthogonal factors.
These factors represent a set of abstract con-
cepts, each conveying some idea common to
a subset of the input collection. From Lingo’s
viewpoint, these concepts are perfect cluster
label candidates; unfortunately, however,
their matrix representation is difficult for
humans to understand. To obtain concise and
informative labels, we need to extract the ver-
bal meaning behind the vector representation
of the LSI-derived abstract concepts.

Among all term co-occurrences in a col-
lection of documents, phrases that appear at
least a certain number of times in the input
collection seem to be most meaningful to
users, and at the same time are relatively
inexpensive to find. They’re often colloca-
tions or proper names, making them both
informative and concise. We therefore use
them to approximate the verbal meaning of
the SVD-derived abstract concepts. Lingo
uses these frequent phrases as cluster labels.

Once we’ve discovered diverse cluster

labels, we assign documents to them using
standard VSM. Figure 1 gives an overview of
the Lingo algorithm’s phases, which we dis-
cuss in the following sections.

Preprocessing
At this stage, we typically use a combina-

tion of three common text-preprocessing
methods:

• stemming, a technique for finding a
semantic representation of an inflected
word (usually a lemma) to decrease the
impact of a language’s syntax;

• ignoring stop words, a common technique
for dealing with terms that occur fre-
quently but have no meaning (conjunc-
tions, articles, and so on); and

• text-segmentation heuristics, a technique
for dividing text into words and sentences
that has many implementations.

Logic suggests that applying these meth-

MAY/JUNE 2005 www.computer.org/intelligent 49

Originally derived from full-text clustering and classification,
topic-grouping of search results has its subtleties. Contextual
descriptions (snippets) of documents returned by a search en-
gine are short, often incomplete, and highly biased toward the
query, so establishing a notion of proximity between documents
is a challenging task.

Clustering systems initially used classic information retrieval
algorithms, which converted documents to a term-document
matrix before clustering. We use the same technique but com-
bine clustering and smart cluster label induction to provide
stronger cluster descriptions. The Scatter-Gather system,1 for
example, used the Buckshot-fractionation algorithm. Other
researchers used agglomerative hierarchical clustering (AHC)
but replaced single terms with lexical affinities (2-grams of
words) as features.2

Unfortunately, strictly numerical algorithms require more
data than is available in a search result. Raw numerical outcome
is also difficult to convert back to a cluster description that
human users can understand. Phrase-based methods evolved to
address this problem. The suffix tree clustering (STC) algorithm3

and the Multisearch Engine with Multiple Clustering system4

form clusters based on recurring phrases instead of numerical
frequencies of isolated terms. STC, for instance, implicitly as-
sumes correlation between a document’s topic and its most fre-
quent phrases. Clustering in STC is thus basically finding groups
of documents sharing a high ratio of frequent phrases; cluster
descriptions are a subset of the same phrases used to form the
cluster.

Phrase-based methods, albeit simple, usually yield good re-
sults. Unfortunately, when one topic highly outnumbers oth-
ers, the algorithms usually discard smaller clusters as insignifi-
cant. Recently, researchers have applied matrix decomposition
methods to the term-document matrix to fully explore the un-

derlying latent topic structure and provide a diverse cluster
structure. For example, researchers have used singular value
decomposition for this purpose,5 and nonnegative matrix fac-
torization in a more general context of document clustering.6

To our knowledge, no other researchers have successfully
integrated numerical and phrase-based methods. Lingo bridges
existing phrase-based methods with numerical cluster analysis
to form readable and diverse cluster descriptions.

References

1. M.A. Hearst and J.O. Pedersen, “Reexamining the Cluster Hypoth-
esis: Scatter/Gather on Retrieval Results,” Proc. 19th ACM SIGIR Int'l
Conf. Research and Development in Information Retrieval, ACM
Press, 1996, pp. 76–84.

2. Y.S. Maarek et al., Ephemeral Document Clustering for Web Appli-
cations, tech. report RJ 10186, IBM Research, 2000.

3. O. Zamir and O. Etzioni, “Grouper: A Dynamic Clustering Interface
to Web Search Results,” Computer Networks, vol. 31, no. 11–16,
1999, pp. 1361–1374.

4. P. Hannappel, R. Klapsing, and G. Neumann, “MSEEC: A Multi-
search Engine with Multiple Clustering,” Proc. 99 Information
Resources Management Assoc. Int'l Conf., Idea Group Publishing,
1999.

5. Z. Dong, Towards Web Information Clustering, doctoral disserta-
tion, Southeast Univ., Nanjing, China, 2002.

6. W. Xu, X. Liu, and Y. Gong, “Document Clustering Based on Non-
negative Matrix Factorization,” Proc. 26th Ann. Int'l ACM SIGIR
Conf. Research and Development in Information Retrieval, ACM
Press, 2003, pp. 267–273.

Related Work in Text Clustering

ods in information retrieval should improve
results. In reality, some results contradict this
assumption, especially when large quantities
of text are available. However, our previous
analysis of the influence of text-preprocess-
ing methods2 and experience with Lingo
indicate that both stemming and stop-word
identification are important for small and
noisy textual information such as snippets.

Lingo recognizes each snippet’s language
separately and applies adequate preprocessing
to it. Most algorithms remove stop words from
the input entirely. Our algorithm only marks
stop words, leaving them in the input because
they can help users understand the meaning of
longer phrases (for example, “Chamber Com-
merce” versus “Chamber of Commerce”).

Phrase extraction
The phrase-extraction phase aims to dis-

cover phrases and single terms that could
potentially explain the verbal meanings
behind the SVD-derived abstract concepts.
Like the online semantic hierarchical clus-
tering (SHOC) algorithm,3 Lingo requires
that cluster labels

• appear in the input snippet at least a spec-
ified number of times.

• not cross sentence boundaries. Sentence
markers indicate a topical shift, therefore

a phrase extending beyond one sentence
is unlikely to be meaningful.

• be a complete (that is, the longest possi-
ble) frequent phrase. Complete phrases
should allow clearer cluster descriptions
than partial phrases (for example, “Sena-
tor Hillary Rodham Clinton” versus “Hillary
Rodham”).

• neither begin nor end with a stop word.
Again, we don’t discard stop words appear-
ing in the middle of a phrase.

Lingo uses a modified version of SHOC’s
phrase discovery algorithm. The algorithm
uses a variant of suffix arrays extended with an
auxiliary data structure—the longest common
prefix (LCP) array—and identifies all frequent
complete phrases in O(N) time, where N is the
total length of all input snippets.

Cluster-label induction
During the cluster-label-induction phase,

Lingo identifies the abstract concepts that best
describe the input snippet collection and uses
frequent phrases to construct a human-read-
able representation of these concepts. This pro-
duces a set of labels, each of which will deter-
mine one cluster’s content and description.

To illustrate the ideas introduced in this
phase, we analyze how Lingo would deal with
an example collection of d = 7 document titles

(figure 2a), in which t = 5 terms (figure 2b)
and p = 2 phrases (figure 2c) appear more than
once and thus are treated as frequent.

First, Lingo builds a term-document
matrix from the input snippets. In such a
matrix, a column vector represents each snip-
pet, and row vectors denote terms selected to
represent documents’ features. In our exam-
ple (shown in figure 3), the first row repre-
sents the word “information,” the second row
represents “singular,” and so on through the
terms in figure 2b. Similarly, column one rep-
resents D1 in figure 2a, “large-scale singu-
lar value computations,” column two repre-
sents D2, “software for the sparse singular
value decomposition,” and so on.

At this stage we disregard terms marked as
stop words (such as “for” in figure 2a) and
terms that haven’t appeared more than a cer-
tain number of times (such as “software” in fig-
ure 2a). This not only significantly increases
the algorithm’s time efficiency but also reduces
noise among cluster labels. We use the popu-
lar Salton’s tfidf term-weighting scheme4 to
eliminate strong bias in the snippets toward the
query words. We calculate values in matrix A
(figure 3) using tfidf and then normalize each
column vector’s length.

We base the actual process of discovering
abstract concepts on the SVD of the term-
document matrix A, which breaks it into three

W e b S e a r c h

50 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Filtered snippets

Clustered
snippets

Clustering
system

Clustering
system

Clustering
system

• Term-document
 matrix, SVD
• Phrase matching
• Pruning

Label induction

Phrase extraction

User query

• Filtering
• Tokenization
• Language
• Stemming
• Stop words

Clustering
& % 56
system

Clustering
& % 56
system

Clustering
& % 56
system

Preprocessing

Web clustering, Linux cluster,
tech news, ...

Frequent
phrases

Clustering
system

Clustering
system

Clustering
system

Clustering
system

Clustering
system

Clustering
system

Web clustering

Clustering
system

Clustering
system

Clustering
system

Performance

Clustering
system

Clustering
system

Clustering
system

Linux cluster

Performance

Linux cluster

Cluster labels

Web clustering

• Vector space model
 querying
• Scoring

Snippet allocation

Figure 1. Overview of the Lingo algorithm’s phases.

matrices (U, S, and V) such that A = USVT.
One of SVD’s properties is that the first r

columns of U (where r is A’s rank) form an
orthogonal basis for the input matrix’s term
space. In linear algebra, a linear space’s basis
vectors can serve as building blocks for cre-
ating vectors over that space. Following this
intuition, in our setting each building block
should carry one of the ideas referred to in
the input collection. Thus, from Lingo’s
viewpoint, basis vectors (that is, the column
vectors in U) are exactly what it has set out
to find: a vector representation of the snip-
pets’ abstract concepts.

In most practical situations, taking all r basis
vectors as abstract concepts would result in an
unmanageable number of clusters—usually
close to the number of snippets. Therefore,
Lingo uses the singular values of the A matrix
(lying on the diagonal of the SVD’s S matrix)
to calculate how many columns of U should
actually proceed to the next stage of the algo-
rithm. Assume that the calculation results in
k = 2 being set as the desired number of clus-
ters for our example. Consequently, in further
processing we use Uk, which consists of the
first k columns of U (shown in figure 4a).

Two characteristics of the basis vectors are
important here. First, the vectors are pairwise
orthogonal, which should result in a rich
diversity among the discovered abstract con-
cepts. Second, basis vectors are expressed in
the A matrix’s term space and thus can be the
frequent phrases discovered in the previous
phase. Lingo can therefore use the classic
cosine distance measure to compare them
and calculate which phrase or word will be an
abstract concept’s best verbal representation.
We consider single terms at this stage
because it’s possible that none of the frequent
phrases describes an abstract concept better
than a single term.

For every frequent phrase and single fre-
quent word, Lingo creates a column vector over
the A matrix’s term space. When assembled
together, these vectors form a term-document
matrix P of frequent phrases and words (figure
4b). In our example, column one corresponds
to phrase “singular value,” column two corre-
sponds to “information retrieval,” column three
corresponds to “information” (single word),
and so on.

Assuming column vectors of both U and
P are length-normalized, as in our exam-
ple, the problem of calculating the cosine
distance between every abstract-concept–
phrase-or-term pair reduces to simple matrix
multiplication.

Rows of the resulting matrix M (figure 4c)
represent abstract concepts, its columns rep-
resent phrases and single words, and individ-
ual values are the cosine similarities in ques-
tion. Thus, in a single row, the maximum
component indicates the phrase or single
word that best approximates the correspond-
ing abstract concept. In our simple example,
the first abstract concept is related to “singu-
lar value,” while the second is related to
“information retrieval.” As the values in the

M matrix range from 0.0 (no relationship) to
1.0 (perfect match), Lingo also uses the max-
imum components as cluster label scores.

Cluster-content allocation
The cluster-content allocation process

resembles VSM-based document retrieval
except that instead of one query, Lingo
matches the input snippets against a series of
queries, each of which is a single cluster
label. So, for a certain query label, if the sim-

MAY/JUNE 2005 www.computer.org/intelligent 51

(b)

(c)

(a)

U ==

0.00 0.75 0.00 –0.66 0.00
0.65 0.00 –0.28 0.00 –0.71
0.65 0.00 –0.28 0.00 0.71
0.39 0.00 0.92 0.00 0.00
0.00 0.66 0.00 0.75 0.00

P =

0.00 0.56 1.00 0.00 0.00 0.00 0.00
0.71 0.00 0.00 1.00 0.00 0.00 0.00
0.71 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.83 0.00 0.00 0.00 0.00 1.00

M = UT
k

0.92 0.00 0.00 0.65 0.65 0.39 0.00
0.00 0.97 0.75 0.00 0.00 0.00 0.66P =

Figure 4. Matrices in the label-induction phase: (a) abstract concepts matrix U,
(b) cluster-label-candidate matrix P, and (c) abstract-concept–cluster-label-candidate
matrix M.

A =

0.00 0.00 0.56 0.56 0.00 0.00 1.00
0.49 0.71 0.00 0.00 0.00 0.71 0.00
0.49 0.71 0.00 0.00 0.00 0.71 0.00
0.72 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.83 0.83 0.00 0.00 0.00

Figure 3. Term-document matrix in the label-induction phase.

D1: Large-scale singular value computations
D2: Software for the sparse singular value decomposition
D3: Introduction to modern information retrieval
D4: Linear algebra for intelligent information retrieval
D5: Matrix computations
D6: Singular value cryptogram analysis
D7: Automatic information organization

T1: Information
T2: Singular
T3: Value
T4: Computations
T5: Retrieval

P1: Singular value
P2: Information retrieval

(b)

(c)

(a)

Figure 2. Input data in the label induction phase: (a) documents, d = 7; (b) terms, t = 5;
and (c) phrases, p = 2.

ilarity between a snippet and the label
exceeds a predefined threshold (snippet
assignment threshold), Lingo allocates the
snippet to the corresponding cluster.

Snippet assignment threshold values fall
within the 0.0–1.0 range. Higher threshold
values result in more documents being put in
clusters, which can decrease the assignment
precision. Lowering the value leads to smaller
groups with better assignment precision but
smaller snippet recall. The snippet assign-
ment threshold value is therefore largely a
matter of user preference. We’ve empirically
verified that thresholds within the 0.15–0.30
range produce the best results.

This assignment scheme naturally creates
overlapping clusters and nicely handles
cross-topic documents. We can also use the
similarity values to sort snippets within their
groups, making the most relevant snippets
easier to identify. Finally, we created an
“other topics” group for those snippets that
don’t match any of the cluster labels.

The last operation of the cluster-content
allocation phase is calculating group scores

as a product of the label score and the num-
ber of snippets in the group. Figure 5 shows
the results for our example.

Evaluation
We can evaluate clustering quality through

empirical evaluation, user surveys, or a merge-
then-cluster approach,which compares a known
cluster structure to the results of clustering the
same set of documents algorithmically.

Yet, a cluster’s quality or a label’s descrip-
tive power is subjective—even humans are
inconsistent when asked to manually group
similar documents. This doesn’t mean human
experts are making mistakes; rather, the
inconsistencies reflect the fact that people
perceive things differently. In this context,
any measure of “quality” relative to some pre-
defined clustering is skewed by the choice of
an “ideal” solution (also called ground truth).

Test data and the experiment
We took our ground truth and test data from

the Open Directory Project (http://dmoz.org),
a human-collected directory of Web page links

and descriptions. Documents and groups (clus-
ters) inside ODP are a result of the common-
sense agreement of many people and one indi-
vidual’s subjective choice. In addition, unlike
most classic information retrieval test suites,
which contain full documents, ODP contains
only short descriptions of documents, which
serve as snippet replacements.

We selected 10 categories (see table 1)
related to four subjects: movies (2 categories),
health care (1), photography (1), and computer
science (6). Documents within each subject
should theoretically have enough in common
to be linked into a cluster. We also wanted to
verify how Lingo would handle separation of
similar but not identical topics within one sub-
ject, so we took some categories from a parent
branch of ODP—for example, four categories
were related to various database systems.
Finally, as table 2 shows, we created seven test
sets mixing categories in various ways so we
could verify specific questions about Lingo. We
clustered the test sets with snippet assignment
threshold values between 0.150 and 0.250.

Empirical evaluation
We manually investigated each cluster’s

contents and label for every test set at the
0.250 threshold level. Table 3 presents the
topmost labels. Cluster descriptions were
generally satisfactory (“federated data ware-
house” and “foot orthotics,” for example),
even if elliptical because of truncated sen-
tences in the input snippets (“information on
infrared [photography]”).

In tests G1 to G3, Lingo highlighted all
mixed categories as the topmost positions,
indicating good topic-separation capabilities.
Diversity test G3 showed that Lingo discov-
ered and appropriately described the signifi-
cantly smaller “Infra” category. The algorithm
also properly divided closely related topics in
test set G4 into clusters. In test G5, “Java” and
“Vi” were the topmost clusters, followed by
database-related clusters. In tests G6 and G7,
Lingo successfully highlighted outlier sub-
jects: In G6, clusters related to “Ortho” were at
positions 3 (“foot orthotics”) and 5 (“orthope-
dic products”) of the result. In recent work, we
show that suffix tree clustering, for example,
has a tendency to obscure small distinct topics
with subgroups of a major subject.5

Analytical evaluation
We can numerically compare similarity

between two cluster structures in several
ways—for example, using mutual-informa-
tion measures.6 But these measures usually

W e b S e a r c h

52 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Table I. Experiment categories.

Category code Number of documents Contents

BRunner 77 Information about the Blade Runner movie

LRings 92 Information about the Lord of the Rings movie

Ortho 77 Orthopedic equipment and manufacturers

Infra 15 Infrared-photography references

DWare 27 Articles about data warehouses (integrator databases)

MySQL 42 MySQL database

XMLDB 15 Native XML databases

Postgr 38 PostgreSQL database

JavaTut 39 Java programming language tutorials and guides

Vi 37 Vi text editor

Information retrieval (1.0)
D3: Introduction to modern information retrieval
D4: Linear algebra for intelligent information retrieval
D7: Automatic information organization

Singular value (0.95)
D2: Software for the sparse singular value decomposition
D6: Singular value cryptograms analysis
D1: Large-scale singular value computations

Other topics
D5: Matrix computations

(b)

(c)

(a)

Figure 5. Cluster-content-allocation final results. We normalized group scores to the
0.0–1.0 range. Numbers in parentheses are cluster scores.

attempt to aggregate similarity between indi-
vidual clusters into a single figure, whereas
we wanted to show the differences in alloca-
tion of objects to clusters between Lingo and
the suffix tree clustering (STC) algorithm.

We used a cluster contamination mea-
sure—that is, a cluster is considered pure if
it consists only of documents from a single
original category (or its subset). Cluster con-
tamination for cluster K is defined as the num-
ber of pairs of objects found in the same clus-
ter K but not in any of the partitions (groups
of documents in the ground truth set we’re
comparing against), divided by the maximum
potential number of such pairs in K.

Cluster contamination of pure clusters
equals 0. Cluster contamination of a cluster
consisting of documents from more than one
partition is between 0 and 1. An even mix of
documents from several partitions is the
worst case; such a cluster is said to be fully
contaminated and has a measure equaling 1.
Due to space limitations, we omit the math-
ematical formulae describing contamination
measure here but present it online (www.
cs.put.poznan.pl/dweiss/site/publications/
download/ieee-cont-appx.pdf).

Figure 6 shows contamination measures for
input data test set G7, clustered independently
using Lingo and STC. As the figure shows,
Lingo creates significantly purer clusters than
STC, especially at the top of the clusters’rank-
ing. In addition, STC can’t distinguish between
informative and uninformative clusters—see,
for example, “includes” or “information”
groups, essentially common words with no
meaning specific to any cluster and hence with
a high contamination ratio. Lingo also pro-
duces contaminated clusters, such as “Web
site” or “movie review,” but these can be under-
stood (“Web site” is a common phrase in ODP)
or explained (the “movie review” cluster is
contaminated because it merges documents
from two categories, “LRings” and “Brun-
ner”). The latter example shows that blind
analysis (including aggregate measures) can
lead to incorrect conclusions; the “movie
review” cluster is a generalization of two orig-
inal categories and as such isn’t bad, even
though it was marked as contaminated.

We omit the remaining tests because the
results and conclusions are similar (includ-
ing the range of threshold settings for Lingo).
Interestingly, adjusting STC’s thresholds
doesn’t improve document allocation much;
it merely affects the clusters’ size.

The experiment revealed a minor drawback
in Lingo’s document-assignment phase. Recall

that Lingo assigns documents to clusters using
VSM after choosing the cluster label. Because
VSM is phrase-unaware, it sometimes assigns
incorrect documents to a cluster—for exam-
ple, the “MySQL database” cluster includes
documents from other database categories that
contain the keyword “database.” This mis-
assignment problem is one of the issues we
need to resolve in the future.

L ingo’s time complexity is high and mostly
bound by the cost of term-vector matrix

decomposition; the best-known algorithms per-
form this operation in O(m2n + n3) for an m �
n matrix. Moreover, the high number of matrix
transformations leads to demanding memory
requirements. However, we designed Lingo for
a specific application—search results cluster-
ing—and, in this setting, scalability to large data
sets is of no practical importance (the informa-
tion is more often limited than abundant). Obvi-

ously, improving the algorithm’s efficiency and
investigating possibilities for distributing the
processing is an important and interesting direc-
tion of future research.

Is search-results clustering a panacea for
all search-related problems? Certainly not.
It’s merely a small step forward to what we
believe is an ideal search engine: one that can
explain the query’s context and hence stim-
ulate interaction between the user and the
system—something even the best ranking
algorithms aren’t good at.

Important enhancements to Lingo will
include

• creating a hierarchical structure of clus-
ters, either directly inferred from the
source, or using man-made ontologies
such as WordNet;

• improving the document-to-cluster assign-
ment phase—the current method based on
the VSM is the algorithm’s weakest spot; and

MAY/JUNE 2005 www.computer.org/intelligent 53

Table 3. Labels of the test sets’ topmost clusters.

Test set identifier Topmost clusters

G1 Fan fiction/fan art, image galleries, MySQL, wallpapers, LOTR humor, links

G2 News, MySQL database, image galleries, foot orthotics, Lord of the Rings,
wallpapers, information on the films

G3 MySQL, news, information on infrared, images galleries, foot orthotics,
Lord of the Rings, movie

G4 Federated data warehouse, XML database, Postgresql database, MySQL
server, intelligent enterprise, magazine, Web based

G5 Java tutorial, Vim page, federated data warehouse, native XML database,
Web, Postgresql database

G6 MySQL database, federated data warehouse, foot orthotics, orthopedic
products, access Postgresql, Web

G7 Blade Runner, MySQL database, Java tutorial, Lord of the Rings, news,
movie review, information on infrared, data warehouse

Table 2. Merged test sets.

Identifier Merged categories Test set rationale (hypothesis to verify)

G1 LRings, MySQL Can Lingo separate two unrelated categories?

G2 LRings, MySQL, Ortho Can Lingo separate three unrelated categories?

G3 LRings, MySQL, Ortho, Infra Can Lingo separate four unrelated categories,
one significantly smaller than the rest (Infra)?

G4 MySQL, XMLDB, DWare, Postgr Can Lingo separate four similar, but not
identical, categories (all related to databases)?

G5 MySQL, XMLDB, DWare,Postgr, Can Lingo separate four very similar categories
JavaTut, Vi (databases) and two distinct but loosely

related ones (computer science)?

G6 MySQL, XMLDB, DWare, Can Lingo separate four dominating
Postgr, Ortho conceptually close categories (databases) and

one outlier (Ortho) (outlier highlight test)?

G7 All categories Can Lingo generalize categories (into movies
and databases)?

• improving the phrase-selection method
to prune elliptical or ambiguous
phrases.

You can try Lingo in the publicly available
online demo of the Carrot2 system at http://
carrot.cs.put.poznan.pl.

References

1. M.W. Berry, S.T. Dumais, and G.W. O’Brien,
Using Linear Algebra for Intelligent Infor-
mation Retrieval, tech. report UT-CS-94-270,
Univ. of Tennessee, 1994.

2. J. Stefanowski and D. Weiss, “Carrot2 and
Language Properties in Web Search Results
Clustering,” Proc. Web Intelligence, 1st Int’l
Atlantic Web Intelligence Conf. (AWIC 2003),
LNCS 2663, E.M. Ruiz, J. Segovia, and P.S.
Szczepaniak, eds., Springer, 2003.

3. Z. Dong, Towards Web Information Cluster-
ing, doctoral dissertation, Southeast Univ.,
Nanjing, China, 2002.

4. G. Salton and M. McGill, Introduction to Mod-
ern Information Retrieval, McGraw-Hill, 1983.

5. S. Osiński and D. Weiss, “Conceptual Clus-
tering Using Lingo Algorithm: Evaluation on
Open Directory Project Data,” Proc. Int’l IIS:
Intelligent Information Processing and Web
Mining Conf., Springer, 2004, pp. 369–378.

6. B.E. Dom, An Information-Theoretic Exter-
nal Cluster-Validity Measure, IBM research
report RJ 10219, IBM, 2001.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

W e b S e a r c h

54 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Bl
ad

e
Ru

nn
er

M
ys

ql
 D

at
ab

as
e

Ja
va

 T
ut

or
ia

l
Lo

rd
 o

f t
he

 R
in

...
Ne

w
s

M
ov

ie
 R

ev
ie

w
In

fo
rm

at
io

n
on

 ..
.

Da
ta

 W
ar

eh
ou

se
Im

ag
e

Ga
lle

rie
...

BB
C

Fi
lm

Vi
m

 M
ac

ro
W

eb
 S

ite
Fa

n
Fi

ct
io

n
Fa

n.
..

Cu
st

om
 O

rth
ot

ic
...

La
yo

ut
 M

an
ag

em
e.

..
DB

M
S

On
lin

e
Ed

ito
r

Co
lle

ct
io

n
In

te
lli

ge
nt

 E
nt

...
W

rit
te

n
by

 T
on

y
Es

sa
y

Bi
og

ra
ph

ie
s

W
al

...
Po

st
gr

es
Fo

ru
m

So
ft

Sh
oe

s
Ot

he
r

xm
l,n

at
iv

e,
na

ti.
..

in
cl

ud
es

bl
ad

e
ru

nn
er

,b
l..

.

in
fo

rm
at

io
n

dm
,d

m
 re

vi
ew

 a
r..

.

us
ed

da
ta

ba
se

ra
lp

h,
ar

tic
le

 b
...

m
ys

ql

ar
tic

le
s

w
rit

te
n

ca
st

si
te

dm
 re

vi
ew

 a
rti

c.
..

re
vi

ew

lin
ks

da
ta

ch
ar

ac
te

rs

da
ta

 w
ar

eh
ou

se
,..

.

pr
ov

id
es

Cluster contamination
Cluster size

Cluster contamination
Cluster size

(b)

(a)

0.00
0.05
0.10

0.20
0.15

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Cl
us

te
r c

on
ta

m
in

at
io

n

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Cluster size

0

0.471

0.183

0

0.264

0.515

0.591

0.359
0.333

0.55

0

0.92

0.21

0

0.825

0.926

0.2

0.778
0.766

0.378

0.185

0 0

0.667

0

0.868

52

43

34

41

31
33

21 21 23 25
15

23

19
12

16 19

10 9 12 10
11

9 9 10 7

126

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Cl
us

te
r c

on
ta

m
in

at
io

n

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Cluster size

0.324

0.898

0.16

0.88

0

0.965

0.82

0

0.138

0.498

0.667

0.523

0.86

0

0.616

0.922

0.548

0.442

0.2

0.758

18

38

13

37

9

35 32

8

30
26 24 24 24

4

23 22 22 22

10

21

Figure 6. Contamination measure and cluster size for test set G7 clustered using (a) Lingo
and (b) suffix tree clustering (STC). We’ve truncated cluster labels to fit the chart. The
STC algorithm has no explicit “others” group. We ordered clusters on the horizontal axis
from the most important clusters (left side) to the least significant ones (right).

T h e A u t h o r s
Stanislaw Osiński is a
software developer with
Poznań Supercomput-
ing and Networking
Center. His research
interests include Web
mining, text process-
ing, and software engi-
neering. He received

his MS in computer science from Poznań Uni-
versity of Technology, Poland. Contact him at
stanislaw.osinski@man.poznan.pl.

Dawid Weiss is a
research associate at
the Laboratory of Intel-
ligent Decision Support
Systems, Poznań Uni-
versity of Technology,
Poland. His research
interests include Web
mining, text process-

ing, computational linguistics, and software engi-
neering. He received his MS in software engi-
neering from Poznań University of Technology.
Contact him at dawid.weiss@cs.put.poznan.pl;
www.cs.put.poznan.pl/dweiss.

