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Abstract Document clustering algorithms usually use vector space model (VSM) as their
underlying model for document representation. VSM assumes that terms are independent
and accordingly ignores any semantic relations between them. This results in mapping doc-
uments to a space where the proximity between document vectors does not reflect their true
semantic similarity. This paper proposes new models for document representation that cap-
ture semantic similarity between documents based on measures of correlations between their
terms. The paper uses the proposed models to enhance the effectiveness of different algo-
rithms for document clustering. The proposed representation models define a corpus-specific
semantic similarity by estimating measures of term—term correlations from the documents
to be clustered. The corpus of documents accordingly defines a context in which semantic
similarity is calculated. Experiments have been conducted on thirteen benchmark data sets
to empirically evaluate the effectiveness of the proposed models and compare them to VSM
and other well-known models for capturing semantic similarity.
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1 Introduction

Document clustering is a fundamental task in text mining that is concerned with group-
ing documents into clusters according to their topics. Algorithms for document cluster-
ing have been used since the early years of text retrieval systems to organize documents
for end-user browsing and to improve the effectiveness and efficiency of the retrieval pro-
cess. In recent years, document clustering has received considerable attention because of the
huge amount of documents that become available on the Web. This drives more research
work to improve the efficiency of document clustering algorithms while maintaining their
scalability.

Many clustering algorithms have been applied to document data sets. These algorithms
include, but not limited to, hierarchical methods [21], k-means [21], spectral clustering [35],
and recently non-negative matrix factorization [25]. Most of these algorithms use the vector
space model (VSM) [30] as their underlying model for document representation. VSM repre-
sents documents as vectors in the space of terms and measures proximity between documents
based on the inner-product of their vectors. Some of document clustering algorithms, like
k-means and non-negative matrix factorization, are applied directly to document vectors,
while others, like hierarchical methods and spectral clustering, are applied to the matrix of
cosine similarities.

The use of VSM as the underlying model for document representation totally ignores any
semantic relations between terms. This means that documents with no common terms are
considered dissimilar even if they have many terms that are semantically related. It accord-
ingly becomes difficult for the clustering algorithm to group these documents together in
one cluster. On the other hand, documents with many terms in common are considered sim-
ilar even if these common terms are noisy and other terms in the two documents have no
semantic relatedness. These documents are more likely to be assigned to the same cluster.
Although some preprocessing techniques (like stemming and stop-words removal) can be
used to reduce lexical variation of terms, these techniques still do not capture aspects of
semantic similarity between terms.

Statistical semantics [14] is a general term that is used to describe an aspect of seman-
tic similarity between units of text that is estimated based on the statistical analysis of
term occurrence patterns. Different document representation models have been proposed
to overcome the limitations of the VSM by capturing statistical semantics between doc-
uments. Some of these models, like the generalized vector space models (GVSM) [37],
capture statistical semantics in an explicit way by directly estimating measures of corre-
lations between terms. These models, however, have not achieved considerable improve-
ment in related tasks, like information retrieval. In addition, the use of these models with
the clustering task has not been fully addressed in the literature. Other models, like latent
semantic analysis (LSI) [4], implicitly capture statistical semantics by mapping documents
to a low-dimension space. Dimension reduction models, however, are computationally
very expensive as they depend on singular value decomposition. In addition, dimension
reduction models do not completely capture semantic similarity between terms as they
essentially perverse the VSM-based similarity between documents in the low-dimension
space.

In this work, we propose new models for document representation that capture seman-
tic similarity between documents using measures of correlations between their terms. We
focus on estimating these measures from the corpus of documents to be clustered. The pro-
posed models accordingly capture semantic similarity within the context of this corpus. The
contributions of this paper can be summarized as follows:
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— We propose new models for document representation that explicitly estimate measures
of correlations between terms and use them to quantify semantic similarity between
documents. The proposed models extend the original generalized VSM model (GVSM)
[37] by developing better estimates of correlations between terms. In comparison with
traditional GVSM models, the proposed estimates have many desirable properties and
they considerably enhance the effectiveness of well-known algorithms for document
clustering.

— We propose new hybrid models that combine the proposed explicit models with latent
indexing to represent documents in a low-dimension latent space where document clus-
tering is performed.

— We use a technique for approximate matrix multiplication to reduce the computational
complexity of calculating semantic similarity and accordingly the clustering algorithms.

— We conduct an extensive empirical evaluation on thirteen benchmark data sets and com-
pare the proposed models to VSM and other well-known models for estimating semantic
similarity.

The rest of the paper is organized as follows. Section 2 presents the necessary background
and reviews some related work in document clustering. Section 3 proposes new representa-
tion models for estimating semantic similarity based on term—term correlations. Section 4
presents hybrid models that combine explicit with latent semantic analysis. Section 5 dis-
cusses how to reduce computational complexity using approximate matrix multiplication.
Experiments and results are presented in Sect. 6. Section 7 finally concludes the paper and
discusses future work.

2 Background and related work
2.1 Document clustering

Document clustering is an unsupervised learning task that aims at organizing documents into
groups according to their similarity. Different aspects of similarity between documents can
be defined. The most commonly used aspect is the topic similarity, which is usually estimated
based on the proximity of document vectors in the space of terms.

Data clustering algorithms can be generally categorized into hierarchical and partitional
[21]. Hierarchical clustering constructs a hierarchy of nested clusters, while partitional clus-
tering divides data points into non-overlapped clusters such that a specific criterion function
is optimized.

Hierarchical algorithms are either agglomerative or divisive [21]. Agglomerative algo-
rithms start with singleton clusters, and then successively merge the most similar pair of
clusters until all data points are grouped in one cluster. Divisive algorithms start with all data
points in one cluster and then successively partition the data points into two dissimilar groups
until singleton clusters are obtained. In document clustering, hierarchical agglomerative clus-
tering (HAC) is more common. HAC algorithms differ in the way they calculate similarity
between clusters. The most commonly used algorithms are single-link, complete-link, and
average-link clustering [21], which measure similarity between two clusters based on the
maximum, minimum, and average of their pairwise document similarities, respectively.

Partitional algorithms used for document clustering include, but not limited to, the
k-means algorithm [21], spectral clustering [35], and non-negative matrix factorization [25].
The k-means algorithm [21] is the most widely used algorithm for data clustering. The goal
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of the algorithm is to group data points into k clusters such that the sum of the Euclidean dis-
tances between data points in each cluster and its centroid is minimized. Spherical k-means
[7] is a variant of the basic k-means algorithm that uses cosine similarity between data points
instead of the Euclidean distance. Spherical k-means is usually used with document data sets
where the cosine similarity is a more indicative measure of proximity between documents.

Spectral clustering [35] is based on spectral partitioning of a graph whose adjacency matrix
encodes measures of similarity between data points. Spectral clustering can be applied to
a document similarity graph [17] or to a bipartite graph of terms and documents [5]. The
advantage of spectral clustering compared to other algorithms is that the solution is deter-
ministic, and it corresponds to the global minimum of the clustering criterion function. On
the other hand, spectral clustering is computationally expensive as it is based on eigenvalue
decomposition.

Non-negative matrix factorization (NMF) [25] is a multivariate analysis method that
decomposes a non-negative matrix as the product of two non-negative matrices. NMF was
introduced in the field of machine learning by Lee and Seung [25] as a method to learn a
parts-based representation of data objects. NMF can also be used for data clustering. In this
case, the columns of one matrix represent the cluster centroids, and the columns of the other
matrix encode the membership values of data points into clusters. Based on this interpreta-
tion, Xu et al. [39] suggested a document clustering algorithm that factorizes each document
as a linear combination of concepts (or clusters).

Although empirical comparisons showed that partitional algorithms are more efficient and
effective than hierarchical algorithms in the document clustering task [41], a hierarchy of
document groups is more informative than a flat partitioning as it naturally represents the
hierarchy of topics. In addition, hierarchical algorithms are suitable for application in which
the number of clusters are not predefined.

2.2 Document representation

Most of the models proposed for document representation originated in information retrieval
systems to calculate the relevance of documents to a user query. The most commonly used
model for document representation is the vector space model (VSM) [30]. VSM represents
documents as vectors in the space of index terms, and measures proximity between documents
using the inner-product of their vectors. Given asetof n documents D = {d; : j=1,...,n}
andasetof mterms T = {t; : i = 1,...,m}. Let X be an m x n term—document matrix
whose element x;; represents the weight of term #; inside document c;. VSM uses the col-
umns of X to directly represent documents. The matrix that encodes the inner-products of
document vectors can be calculated as:

Kvsm = X7 X, (nH

where Kyswm is an n X n matrix, which is called the kernel matrix [33]. The matrix of cosine
similarities can be calculated from the kernel matrix as:

Sim = L~2kL71/2, 2)

where L is an n x n diagonal matrix whose elements are the diagonal elements of K.

VSM has been used in many text-mining tasks where it has achieved good results as well
as an acceptable computational complexity. However, VSM in its original form assumes
that terms are independent and accordingly ignores any semantic relations between them.

I The computational complexity of eigenvalue decomposition is O(@n3), where n is the number of documents.
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This assumption implies that proximity between documents does not reflect its true topic
similarity. In addition, redundancy in representation increases the dimensionality of docu-
ment vectors and negatively affects the performance of the underlying algorithms.

The generalized vector space model (GVSM) is a document representation model that
was proposed by Wang et al. [37] to overcome the limitations of VSM. The model estimates
similarity between documents based on how their terms are related. Wang et al. highlighted
that VSM in its original form assumes that term vectors form an orthonormal basis and pro-
posed a new model that removes this orthogonality assumption. In GVSM, term vectors are
used as a non-orthogonal basis in which documents are represented. The kernel matrix in the
new basis is calculated as:

Kovsm = X' GX, 3)

where G is an m x m Gram matrix? (also called the association matrix), which represents
the inner-products of term vectors in some space. The GVSM model in its original form
estimates the Gram matrix G by representing terms in an orthonormal basis of 2™ vectors,
which represent the min-terms that can be formed by taking different combination of terms.
The association measures between terms are calculated as the cosine of the angle between
their vectors in the new space. However, as the maximum number of min-terms that appear
in n documents is n, the GVSM is usually simplified by assuming that each document has
a unique min-term. This assumption means that terms are represented as vectors in the dual
space of documents. Accordingly, G can be calculated as: G = L™/2X X7 L~=1/2 where L
is a diagonal matrix whose elements are the lengths of term vectors in the dual space. Other
versions of GVSM [2] calculate G as the inner-products of term vectors in the dual space of
documents: G = X X7

GVSM has been used in information retrieval where it has not achieved much improve-
ment. However, it has been successfully used in multi-lingual information retrieval [2] where
documents available in different languages are used to construct the G. The similarity between
a user query in one language and documents in another language can be calculated using the
GVSM similarity kernel.

Latent semantic indexing (LSI) originally proposed by Deerwester et al. [4] is another
document representation model, which is based on decomposing the term—document matrix
using singular value decomposition (SVD): X = U V. The leading left and right singular
vectors are used to represent terms and documents in some semantic space. Let Uy and Vy
be m x d and n x d matrices whose columns are the leading d left and right singular vectors
of X, respectively, X is a d x d diagonal matrix whose elements are the largest d singular
values of X. The matrix Uy is directly used to represent terms in the d-dimensional semantic
space. Each document is then represented in the semantic space as a linear combination of

(LSD)
Xd

their term vectors: =U dT X. The corresponding kernel matrix is:

Kisi = XTU,UF X. 4
The use of SVD obtains the best rank-d approximation of K in terms of the Frobenius

norm? of the approximation error: ||K — Kisyl| . This means that LSI essentially preserves
similarity between documents in VSM.

2 Inlinear al gebra, the Gram (or Gramian) matrix of a set of vectors is a matrix of the inner-products between
these vectors.

3 The Frobenius norm K|l is calculated as |/ Z; ;|k;; 2.
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LSI is highly related to the principal component analysis (PCA) [23], which is a
well-known method for dimension reduction. PCA is equivalent to LSI if the data matrix
used by LSI is column-centered.

Latent semantic kernel (LSK) [3] is a kernel-based version of the LSI method. Given a ker-
nel matrix K, which represents the inner-product of documents in some space, the eigenvalue
decomposition of K can be computed as:

K=UAUT,

where U is an n X n matrix whose columns are the eigenvectors of K, and A isann x n
diagonal matrix whose elements are the eigenvalues of X. The latent semantic indexing could
be performed by taking the d eigenvectors of K, which corresponds to the largest eigenvalues
Uy, and use them to represent document vectors: X ,((LSK) = A;/ 2 U dT . Similarly, kernel PCA
[31] is a kernel-based version of the PCA method.

Other models for document representation are based on using lexical ontologies, such as
WordNet [28], to represent documents in the space of concepts and calculate their similarity.
Similar representation models are based on exploiting knowledge from an encyclopedia (like
Wikipedia). Explicit semantic analysis (ESA) [15] is such a model that represents terms as
vectors in a space of concepts represented by articles from Wikipedia. Wikipedia-based repre-
sentation models have recently been used to enhance the performance of different text-mining
tasks [19,36].

2.3 Representation models for document clustering

Most of document clustering techniques use the VSM for document representation. The clus-
tering algorithm is either applied directly to document vectors (like k-means and NMF) or
to the matrix of cosine similarities Sim (Eq. 5) (like hierarchical and spectral clustering). In
both cases, the clustering algorithm groups documents into clusters based on the VSM-based
similarity, which does not reflect how terms are semantically related.

Dimension reduction techniques have been used with VSM to obtain a low-dimension rep-
resentation for document clustering algorithms. Some work include the use of latent semantic
indexing (LSI) [32], and locality preserving indexing (LPI) [1]. Although dimension reduc-
tion techniques implicity capture some aspect of semantic similarity between terms, they
essentially map documents to a low-dimension space such that VSM-based similarity is pre-
served as much as possible. In addition, dimension reduction techniques are computationally
very complex as they depend on the singular value decomposition of the data matrix.

Ontology-based models have also been used with document clustering algorithms.
Hotho et al. [18] proposed an approach in which terms are augmented or replaced by vectors
based on related concepts from WordNet. The concepts vectors are then used with traditional
clustering algorithms. Jing et al. [22] similarly tackled the clustering problem by using a
new measure of term similarity, which is based on relations between terms in an ontology,
such as WordNet. They also proposed an approach to generate an ontology from a text cor-
pus. Recently, Wikipedia has been used to construct concept vectors for document clustering
algorithms [19,20]. However, ontology and Wikipedia-based techniques are computationally
complex as they depend on mining term—term correlations from extremely large knowledge
sources. In addition, general-purpose thesauri, like WordNet, suffer from the presence of
noise and irrelevant information. On the other hand, building a domain-specific thesaurus is
a difficult task.

Other work on document clustering directly exploits some sort of correlation between
terms by dividing them into groups. These groups are then used to guide the partitioning of
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documents into clusters. Slonim and Tishby [34] proposed an algorithm which first groups
terms into clusters such that information about the document corpus is preserved, and then
groups documents into clusters such that information about term clusters is preserved. Simul-
taneous clustering of terms and documents [5] is a related approach which is based on spectral
partitioning of a bipartite graph of documents and terms. Recently, Pessiot et al. [29] pro-
posed a similar approach which finds word groups by fitting parametric models. Fung et al.
[13] suggested a hierarchical algorithm for document clustering that uses frequent itemsets
of terms for building a tree of topics. As the number of terms is much larger than the number
of documents, finding a grouping of terms is computationally very complex. In addition, the
clustering of terms into groups captures only positive correlations between terms but does
not differentiate between uncorrelated and negatively correlated terms.

3 Document clustering using semantic similarity based on term—term correlations

In this section, a method for exploiting correlations between terms in document clustering is
described. The method calculates similarity between documents based on the statistical corre-
lations between their terms and then uses these similarities to group documents into clusters.
We analyze different similarity models and show how these models can be efficiently used
with existing algorithms for document clustering.

3.1 Document similarity models

Let D={d;: j=1,...,n}beasetof n documents that contain m terms, X be anm x n
matrix whose element x;; represents the weight of term #; inside document d;. The used
document similarity model is based on the generalized VSM (GVSM) [37], which assumes
that term vectors are linearly independent and represents documents as a linear combination
of term vectors. Let Z and 7; be the vectors of document d; and term #;, respectively. These
vectors represent documents and terms in some semantic space. We represent the similarity
between documents using a kernel matrix [33, Chap. 10] (referred to as semantic kernel),
which encodes the inner-products of document vectors in this space. The semantic kernel K
that corresponds to GVSM can be generally expressed as:

K =XTGX,
where K = [k(Z, EJ))]

G = [( i, tj )]mxm is an m x m kernel (Gram) matrix of term vectors. The cosine similarity
between documents can be calculated from the semantic kernel K as:

. is an n x n kernel (Gram) matrix of document vectors, and

Sim = L~2k L7172, 5)

where L is a n x n diagonal matrix whose elements are the diagonal elements of K.

The Gram matrix of term vectors G encodes measures of statistical correlations between
terms. These measures could be estimated from the documents to be clustered or a subset of
them. In general, this subset could be selected using random sampling or any other determin-
istic algorithm for identifying representative documents. In Sect. 5, we employ a non-uniform
sampling mechanism to select this subset of documents.

Our approach requires G to be positive semi-definite as it represents the inner-prod-
ucts of term vectors in the semantic space. In general, any positive semi-definite matrix
that represents some notion of correlation between terms can be used as an estimate of G.
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In this section, we analyze different estimates of G, which are based on the association and
covariance matrices between terms.

Let C = {c; : j =1,...,n.} be the set of n. documents that are used to estimate
G,0 = [qi j]mxnr be an m x n. matrix whose element g;; represents the weight of term
t; inside document d;. According to the simplified GVSM, the correlations between terms
can be estimated as the inner-products or cosine similarities of term vectors in the dual space
of documents. The matrix of inner-products (also called un-normalized association matrix)
can be calculated as: Gassc = QQ7, while the matrix of cosine similarities (also called

normalized association matrix) can be obtained by dividing the elements of Gassc by the
1/2 0 QT —-1/2

is a m x m diagonal matrix whose elements are the diagonal elements of QQT. We also
suggest the use of covariance matrix between terms, and the matrix of Pearson’s correlation
coefficients to estimate G. The use of these estimates implies the assumption that terms
are random variables with Gaussian distributions. Let Q be a matrix that is obtained from
QO by centering its columns The sample covariance matrix of terms can be calculated as:
Geov = L_00T = L OHQT, where H =1 — n—eeT is an n. x n. centering matrix,
and e is the all-ones vector of size n.. Note that H = H H as H is a projection matrix. The
matrix of Pearson’s correlation coefficients can be calculated by normalizing the covariance
matrix: GpcOrRR = ncl—l 1/2Q1‘I QT 1/2
elements are the diagonal elements of QH orT.

One problem with the above formulas is that G is non-sparse and its size is O (mz) Asthe
number of terms m in a moderate-size corpus (about 2K documents) is more than 30K terms,
the storage of G in four-bytes single precision requires more than 3 gigabytes of memory.
To solve this problem, the semantic kernel K = X7 G X can be calculated without explicitly
storing G. In the suggested formulas, G is estimated from the term—document matrix Q using
an equation of the form G = ZZT, where Z = f (Q) is an m x n. matrix that is function
of Q. In this case, the semantic kernel matrix can be calculated by first calculating matrix
W = ZTX, and then calculating K = WTW. The size of matrix W is O (nn.), which is
very small compared to that of G (as n, n. < m). W can be used to represent documents
in the semantic space which capture correlations between terms, and it can be used directly
with vector-based clustering algorithms. The W matrices for different correlation matrices
can be written as:

square root of the Euclidean norm of term weighs: Gassc N = where L g

, where L5 is am x m diagonal matrix whose

Wassc = 07 X, (6)
Wassc N = 0Ly X, !
1
Weoy = ﬁHQTX, and ®)
——
W 1 gor L_I/ZX 9
PCORR = N 0 (©)]
C

The non-zero elements of Lo and Lé are of O (m), and they can be calculated in an effi-
cient way. The time complexity of calculating W is generally O (nn.m). However, X and
Q are very sparse term—document matrices and accordingly can be efficiently multiplied. In
addition, the multiplication to H can be factorized and calculated in an efficient way with
no need to explicitly store H. The semantic kernels that correspond to different estimates of
G are:

Kassc = XT 00" X, (10)
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1/2

Kassen=X"L,""00"L, (11)
1
Kcoy = ﬁXTQHQTX, and (12)
=
1 _ _
Kpcorr = ~—— XL 5 PoHQT LS " x (13)
=

The time complexity of calculating a semantic kernel K is O (nznc) given W, while the
time complexity of calculating the basic kernel matrix Kyswm given X is O (nzm) However,
W contains few zero elements compared to X, which is very spare. This makes the calcu-
lations of semantic kernels more computationally complex than the basic kernel. We will
discuss one method to reduce this complexity in Sect. 5.

In the next section, the suggested semantic kernels are analyzed from a geometric per-
spective.

3.2 Geometric interpretation

The Gram matrix G represents the inner-products of term vectors in some semantic space.
In this section, we study, for different estimates of G, the properties of term vectors in the
semantic space.

One property to study is the length of a term vector ta in the semantic space. It is desir-
able that the length of a term vector reflects its importance in the corpus of documents.
ThlS length is equal to the square root of the inner-product of the term vector with itself:
H tq H = /G (a, a). In the case of Gassc, the length of a term vector is equal to the sum of
its squared weights in all documents of C:

ASSC

This somehow quantifies how important is the term in the documents of C. If Gcov is used,
this length is equal to the standard deviation of the term weights in C:

- Ma)z =

cov | ne—14
i=

where u, = n]T Z:‘lzl qqi and o, are the mean and standard deviation of the weights of term
t, in C. Standard deviation of term weights is a better measure of the ability of the term to
discriminate between documents than the sum of squared weights. Terms with almost the
same weight across documents (even if this weight is high) will have very small variance and
accordingly very small vector length. On the other hand, terms with higher variance appear
frequently in some documents and rarely in others. This measure is very similar to the term
variance quality (TVQ) [6], which has been used for feature selection in document clustering.
On the other hand, if Gassc N and Gpcorr are used, the length of all term vectors in the
semantic space is 1. This means that all terms are assigned the same importance value which
is undesirable.

Another property to consider is the cosine similarity between term vectors in the semantic
space. It is desirable that the semantic kernel maps positively correlated terms to close points
in the semantic space while mapping negatively correlated terms to faraway points. These
cosine similarities can be calculated by normalizing elements of G using the lengths of term
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vectors:

cos(t_> t_;;) = G@b
“ VG (@, a)/G b, b)

In the case of Gassc and Gcov, the cosine similarities between term vectors are equal to
G assc_N and Gpcorr, respectively, while in the case of Gassc N and Gpcorr, the cosine
similarities between term vectors are equal to their inner-products as all term vectors have
unit length. Association-based matrices, G assc and G assc_n, do not encode negative corre-
lations between terms. Vectors of negatively correlated and uncorrelated terms are mapped to
near-orthogonal directions (cos & 0). On the other hand, covariance-based matrices, Gcov
and Gpcorr, map uncorrelated terms to near-orthogonal directions, and negatively correlated
terms to opposite directions in the semantic space (cos &~ —1).

Based on this analysis, it can be seen that using un-normalized association matrix G aAssc
and the covariance matrix Gcoy could achieve better performance for document clustering
because of their ability to automatically weight terms according to their discrimination abil-
ity. We can also see that the use of covariance matrix Gcoy could achieve the best results
because negatively correlated terms are mapped to vectors with almost opposite directions.

3.3 Clustering in the semantic space

In this section, the use of existing document clustering techniques with the proposed models
is discussed. In general, clustering algorithms that have kernel-based versions can be applied
directly to the semantic kernel K. Other algorithms that work on the proximity matrix of data
points can be applied to the cosine similarity matrix Sim (Eq. 5). However, the kernel-based
versions of some algorithms, like k-means, are more computationally demanding than their
original vector-based algorithms. Moreover, some other algorithms, like spherical k-means,
cannot be easily kernelized.

One way to avoid using kernel-based versions of these algorithms is to first get an ortho-
normal basis for the semantic space represented by G, and then apply vector-based clustering
algorithms on document vectors in this basis. An orthonormal basis for the semantic space
can be obtained by calculating eigenvalue decomposition of G: G = UAUT, where U is
an m X m matrix whose columns are the eigenvectors of G, and A is a m x m diagonal
matrix whose diagonal elements are the eigenvalues of G. The term and documents vectors
can accordingly be represented in the semantic space as:

T, = A2UT,
Dy = AV?UTX,

where the columns of 7 and Dj are the vectors of terms and documents, respectively. Doc-
ument clustering algorithms that are vector based can be directly applied on the columns of
D;. This method, however, is computationally infeasible because the Gram matrix G cannot
even be stored as discussed in Sect. 4.1.

A more efficient method is to approximate the document vectors in the semantic space by
representing the semantic kernel as K = W’ W and then using the columns of W to repre-
sent document vectors. We show that this method when applied with k-means and spherical
k-means is equivalent to applying the algorithms on the document vectors in the orthonormal
basis.

We first consider the case when the k-means algorithm is applied on the document vectors
in the orthonormal basis. The centroids of clusters can be expressed in terms of document
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vectors in the orthonormal basis as:

where 1] is the centroid of cluster 7, X; = |n]—| > diem, Xi 18 the mean of column vectors
; X J

of X that represent documents of cluster ;. During the assignment step, the new cluster
labels of documents are calculated as:

H
yi = arg min; H d; —/T;H

The square of the Euclidean distance can be written as:

— 2 — T /,—
[7-5 - @-5)' (7 -5)
—\T —
- (75 vavr (7 -3)

If the semantic kernel K is represented as K = W’ W such that W = ZT X. The k-means
algorithm can be applied on the columns of W. In this case, the centroids of clusters, and the
square of the Euclidean distances can be written as:

den]
-2 —
77| <%> 227 (7 -5)

—
Although /ix # iz, the Euclidean distances between documents and centroid vectors are the
same as distances in the orthonormal basis:

- 2 —\T
[ ) = (7 -%) o (v %) =@ -m]

This means that applying k-means on the columns of W is equivalent to applying the algo-
rithm in the orthogonal space.

In the case of spherical k-means algorithm, it can be shown in a similar way that cosine
similarities between documents and centroids in the orthonormal basis are equal to the cosine
similarities between the columns of W and the centroid vectors calculated based on W:

X; ij -
cos (qu/) = Cos (di,uj)

s

Algorithms 3.1 and 3.2 show the steps of applying spherical k-means, and hierarchical
clustering in the semantic space, respectively. k is the number of clusters, fnax is the max-
imum number of iterations, and IT is the output partitioning of documents. In the case of
hierarchical clustering, similarity between clusters Sim (7'[1-, T j) is a function of the cosine
similarity between their documents Sim (d,, dp) depending on the linkage method (e.g., com-
plete, average). In Algorithm 3.1, it should also be noted that the solution of the maximum
operation at step 4 is not unique. Two documents could be at equal distance to more than one
centroid. In this case, the document will be assigned to one of these clusters at random. The
same applies to step 4 of Algorithm 3.2.

If Gcov or Gpcorr is used to estimate correlations between terms, the kernel matrix K
as well as the matrix W will contain negative values. In this case, clustering algorithms that
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require only non-negative values like NMF and spectral clustering cannot be directly applied.
One way to apply these algorithms is to remove negative entries from the matrices. This can
be done by setting all negative values to zero or by adding some constant to all the elements
of the matrix. In the case of NMF, semi-NMF [8], a variant of NMF that works on matrices
with negative values can be used.

Algorithm 3.1 Spherical k-Means in Semantic Space
Inputs: X, O, tmax. k
Outputs: I1 = {my, ..., 71}

Steps:
1. Z=f(Q),W=2zTx
Initialize: Ty = {my, ..., ¢}, 1 =1
—
v wi
3. = =1k
S S
4. y; = arg max; cos (Wl, ;7;), i=1.k
5. mi={xi:yi=j} j=Lk
6. I, ={m,..., 7}
7. If(Tl; #1;1 &t < tmax) t =t + 1, Go to step 3.

Else Return IT;

Algorithm 3.2 Hierarchical Agglomerative Clustering in Semantic Space
Inputs: X, O, tmax. k
Outputs: IT = {7y, ..., 1x}

Steps:

1. Z=f(Q),W=2zTx

2. K=WI'w,Sim=L""?2kL~1/?

3. Inmitialize: g = {my, ..., .}, m = {x;}, i =1l.n,t =1
4. {m,, mp} = arg MaXy,; 7; Sim (rri, rrj)

5. w.=m,Umyp

6. I ={I1,/{ng, mp}} U 7,

7. If(IT;| > k), t =t + 1, Go to step 4.

Else Return IT;

4 Document clustering using hybrid models for semantic similarity

This section proposes new hybrid models for document representation, which combine
explicit similarity models proposed in Sect. 3 with dimension reduction techniques. The
models first construct a semantic space in which similarity between documents encodes how
their terms are statistically correlated. Dimension reduction algorithms are then applied to
document vectors in the semantic space to obtain latent concepts.

Hybrid models differ from traditional latent models in the properties of documents they
preserve in the latent space. Latent semantic models map documents to a low-dimension
space based on singular value decomposition (SVD). SVD obtains a low-dimension rep-
resentation such that the error of approximating data and kernel matrices (in terms of
Frobenius norm) is minimum. This means that low-dimension representation essentially
preserves the VSM-based similarity, which ignores any semantic relations between terms.
However, these models implicitly capture some correlations between terms as a result of

@ Springer



Statistical semantics for enhancing document clustering

ignoring some dimensions. The proposed hybrid models, on the other hand, preserve semantic
similarity that is explicitly estimated based on term—term correlations. We empirically show
that preserving explicit measures of semantic similarity is more effective than preserving
VSM-based similarity, and it achieves better performance with the document clustering
task.

4.1 Mapping documents to latent semantic space

Given the representation of documents in the semantic space, W (Egs. 10-13), dimension
reduction techniques can be applied to the matrix W or to the kernel matrix K = W W
to obtain a concise representation of document vectors that preserves semantic similarity
between documents. Dimension reduction removes the noise or irrelevant information in
the original term—document matrix and in the calculation of term—term correlations. It also
allows documents to be clustered in a more efficient way.

In our experiments, we use both the latent semantic indexing (LSI), and the principal
component analysis (PCA) methods for reducing the dimension of document vectors. In the
case of LSI, the singular value decomposition of W is calculated as:

w=UxVT, (14)

where U and V are n x n matrices whose columns are the left and right singular vectors of
W, respectively. The singular vectors that correspond to the leading singular values can be
used to represent the document vectors in the latent semantic space as follows:

Wy =U'w =3,v], (15)

where W, is an d x n matrix whose columns represents the document vectors in the latent
semantic space. Uy and V; are n x d matrices whose columns are the leading d left and right
singular vectors of W, respectively.

In the case of PCA, the representation of document vectors can be obtained by applying
the singular value decomposition on the matrix W obtained by centering the columns of W.

The representation of document in the semantic space can also be obtained by applying
the latent semantic kernel (LSK) to the kernel matrix K = W7 W (or kernel PCA [31] in
the case of PCA). The kernel matrix K is decomposed using eigenvalue decomposition:
K = UAUT. The leading eigenvectors Uy are then used to represent the document vec-
tors in the low-dimension space. This method is equivalent to applying LSI on W (or w).
The kernel matrix K; of document vectors in the low-dimension space can be obtained as:
Ki=UsAqU dT .

4.2 Clustering in the latent semantic space

Document clustering algorithms that are vector based (such as k-means) can be applied
directly in the semantic space on the columns of Wy. Other algorithms that are based on
similarities between documents (like hierarchical clustering) can be applied to the matrix of
cosine similarities Sim. Kernel-based algorithms can also be applied to K. Algorithm 4.1
shows the steps of applying spherical k-means in the latent semantic space. k is the number of
clusters, d is the number of dimensions in the semantic space, fmax is the maximum number
of iterations, and IT is the output partitioning of documents.
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Algorithm 4.1 Spherical k-Means with Hybrid Models
Inputs: X, O, k, d, tmax
Outputs: IT1 = {7y, ..., 7}

Steps:
. w=2z7x,
2. [U,%Z,V]=svd (W)
3. Wy=UJwW=x,3V]
4. [Initialize: Iy = {7y, ..., ¢}, t =1
— ZX,-GJT- w_fﬁ .
5. wWi=g—t—=y, =1k
| er, @

yi = arg max; cos (w_f,ﬁj), i=1.k
T[j:{xii Vi :j}, j:l..k

I, = {my, ..., m}

If(T; #;1 &t <tmax)t =t + 1, Goto 5.
Else Return IT;

Y

5 Reducing computational complexity

The calculation of semantic kernels (Eqs. 10-13) are computationally complex compared to
VSM. This limits the application of the proposed representation models to large-scale data
sets. The formulas used for calculating semantic kernels are in the form of K = wTw,
where W is an n,. x n matrix whose columns represent documents and rows represent the
basis of the semantic space. One way to reduce the computational complexity of calculating
the semantic kernel K is to select a subset of documents (i.e., rows of W) and use them
to estimate G. To do that, we use an approach for approximation matrix multiplication that
was proposed by Drineas et al. [10]. This approach approximates a matrix multiplication of
the form W7 W by constructing a matrix R from a subset of W’s rows selected based on
non-uniform random sampling (with replacement). The approximate matrix multiplication
is then calculated as:

K =R"R.
Let p; is the probability of selecting document d;, Drineas et al. [10] suggest that:

WOl
= Wi

pi

where W is the row i of matrix W, W(i)‘ is its length, and || W|| . is the Frobenius norm of
W . Ithas been shown by Drineas et al. [10] that if the rows of W are sampled with replacement
using probabilities p;’s , and the sampled rows are used to construct a matrix R such that:

RO — 1y,
Vipi,

then the approximation error is bounded as follows [10]:
1
E[[w'w-&"R| ] <— 1wl
F V1 F

where [ is the number of selected rows.

@ Springer



Statistical semantics for enhancing document clustering

Table 1 The properties of data sets used to evaluate different similarity models. n, m, and k are the number
of documents, terms, and classes, respectively

Data sets n m Mdoc k Nclass

20ng 2,000 28,839 23.30 £49.10 20 100.0 &£ 0.000
Classic 7,094 41,681 06.20 £ 7.700 4 1773.5 £971.4
fbis 2,463 2,000 68.50 £ 88.70 17 1449 £139.3
Hitech 2,301 126,321 37.90 £ 27.90 6 383.5 £ 189.9
Reviews 4,069 126,354 43.30 £ 34.80 5 813.8 +£520.9
la12 6,279 31,472 43.50 £ 38.00 6 1046.5 £ 526.5
tr31 927 10,128 111.9 £248.3 7 132.4 £ 124.0
trd1 878 7,454 66.50 £+ 100.5 10 87.80 + 80.10
re0 1,504 2,886 15.00 £ 14.50 13 115.7 £ 173.8
rel 1,657 3,758 15.40 £+ 12.30 25 66.30 £ 91.80
kla 2,340 21,839 44.50 £ 20.80 20 117.0 £ 117.5
klb 2,340 21,839 44.50 £ 20.80 6 390.0 £513.3
wap 1,560 8,460 43.20 £ 20.50 20 78.00 £ 81.10

mgoc 1s the average number of terms per document (after preprocessing), and n¢|,sg is the average number of
documents per class

We use this approach to select a subset of W’s rows and use them as a basis to represent the
set of documents to be clustered. We then either use R with vector-based clustering algorithms
such as spherical k-means or calculate K = RT R and use it with similarity-based clustering
algorithms such as hierarchical clustering. The computational complexity of calculating an
approximate semantic kernel K is O (n?l) given R.

6 Experiments and results
6.1 Data sets

Experiments have been conducted on thirteen benchmark data sets. The properties of dif-
ferent data sets are summarized in Table 1. These data sets have been previously used to
evaluate different algorithms for document clustering. The 20 ng is a benchmark data set that
consists of newsgroup documents. We used the mini-newsgroups version, which is available
at the UCI KDD Archive.* The pre-processing steps include the removal of message headers,
stop-word removal and stemming. The other data sets were used by Zhao and Karypis [40,41]
to evaluate the performance of many algorithms for document clustering. The classic data set
consists of CACM, CISI, CRANFIELD and MEDLINE abstracts.’ The fbis, hitech, reviews,
lal2, tr31 and tr41 data sets are from TREC collections.® The re0 and rel data sets are two
subsets of Reuters-21578 [26]. The kla, k1b and wap data sets are from the WebACE project
[16]. We used the pre-processed versions of these data sets distributed with the CLUTO
Toolkit [24]. The pre-processing steps that were applied to these data sets are stop-word
removal and stemming. In all data sets, the words that appear in one document are removed

4 http:/kdd.ics.uci.edu.
5 ftp://ftp.cs.cornell.edu/pub/smart.
6 http://trec.nist.gov.
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and the normalized term frequency—inverse document frequency (¢ f-id f ) weighting scheme
is used to encode the importance of terms inside documents.

6.2 Experimental setup

Different experiments have been conducted to evaluate the effectiveness of document clus-
tering using the proposed models compared to well-known representation models.

Three document clustering algorithms are used for evaluation: spherical k-means and
hierarchical agglomerative clustering (HAC) with both complete and average linkage. For
spherical k-means, a MATLAB implementation of Algorithm 4.1 is used. The output clusters
are refined by using an incremental optimization technique that moves individual documents
between clusters. As Algorithm 4.1 is non-deterministic, it is repeated 10 times using differ-
ent initial solutions, and the solution with the best value of the objective function is selected.
This experiment is repeated 50 times, and the average and standard deviation of quality mea-
sures are calculated. In each run of the algorithm, the maximum number of iterations used is
100. For HAC algorithms, the MATLAB function linkage is used.

In each experiment, we first use the document representation model to represent document
in the semantic space or calculate semantic similarity between documents, and then apply
the clustering algorithm to either the representation of document or the similarity matrix.

6.3 Performance evaluation

The clusters obtained by different algorithms are compared to the ground-truth partitioning
of documents. In order to evaluate the output of HAC algorithms, a flat partitioning of docu-
ments is obtained by traversing the hierarchy from the top cluster until the predefined number
of clusters is reached.

We used several quality measures to evaluate the performance of the clustering algorithms.
We used F-measure (F), entropy (E) and purity (P). Higher values of F and P and lower
values of E indicate better clustering solutions. These measures have been widely used in
the literature to evaluate the performance of different clustering algorithms. However, in a
recent study by Wu et al. [38], it has been shown that entropy and purity do not capture the
uniform effect of the k-means clustering. The study compared different quality measures and
suggested the use of the von Dongen criterion (VG) [9] and variation of information (VI)
[27]. In some of our experiments, we used normalized versions of VG and VI proposed by
Wau et al. [38]. Lower values of VG and VI indicate better clustering solutions.

The used quality measures are calculated as follows. Let n be the total number of docu-
ments, n;; be the number of documents that belong to class i and cluster j, n; be the number
of documents in class i, and n; be the number of documents in cluster j. To calculate
F-measure, the precision, recall, and F-measure of mapping class i to cluster j are first
calculated as: Pij = I’l,’j/nl‘,R,'j = nij/nj, F,'j = ZP,']'R,']'/ (P,'j + Rij). The F-measure of
class 7 is then calculated as the maximum of F-measure of mapping this class to all clusters:
F; = max; {F;;} . The overall F-measure is calculated as:

C
n;
F = Z —F;.
i=1

The entropy measures the homogeneity of clusters withrespect to classes. Let p;; = n;;/n;
be the probability that a member of cluster j belongs to class i, the entropy of a cluster j is
calculated as: E; = — > ;_; pijlog ( pi j) . The overall entropy is then calculated as:

@ Springer



Statistical semantics for enhancing document clustering

k
EeX

The purity measures the average precision of clusters relative to their best matching clas-
ses. The purity of a cluster j is calculated by first assigning cluster j to the most dominant
cluster j, and then dividing the number of documents that belong to cluster j and class i by
the total number of documents in cluster j: Pj = nijmaxi {n,- j} . The overall purity is then
calculated as:

k
nj
P=>" P
j=1

The van Dongen criterion (VG) [9] was proposed for evaluating graph-partitioning algo-
rithms. VG measures how representative are the majority objects in each class and cluster.
We used the normalized version of VG proposed by Wu et al. [38]:

(21’[ — Zi max; njj — Zj max; I’lij)

VG" =
n —max; n; —max; n;j
(2 J J)

The variation of information (VI) [27] was proposed as an information theoretic criterion
for comparing two clusterings. VI measures the amount of information lost and gained in
changing from one clusterings to the other. We used the normalized version proposed by Wu
et al. [38]:

> > pijlog (pij/pip))
> pilog (pi) + X2 pilog (p))

where p;; = n;j/n, pi = n;/n,and pj =n;/n.

VI"=1+2

6.4 Evaluation of explicit models

In our first set of experiments, we compare the four representation models proposed in
Sect. 3: ASSC, ASSC_N, COV, and PCORR. In all experiments, the set of all documents to
be clustered, D, are used to estimate the correlations between terms.

The VSM-based kernel Kysm is used as our baseline and the improvements in quality
measures relative to the baseline are calculated as:

qImrov. (%) = (C] - qVSM) /qVSM x 100%. (16)

The average of relative quality measures for the 13 data sets is calculated, and the 7-test is
used to assess the significance of using semantic kernels compared to the VSM-based kernel.
In specific, we consider each quality measure and test the null-hypothesis that using seman-
tic similarity achieves no significant improvement in this quality measure. The ¢-statistic is
calculated as:

1
s/v/n’

where ¢ and s are the average and standard deviation of relative quality measures, and n
is the number of data sets. The value of ¢-statistic is then compared to the critical value
teritical Obtained from the z-distribution table for a 95% confidence interval. If 1 > fcritical,

=
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Table 2 The average improvements in quality measures and run-time for different models of semantic
similarity relative to VSM (baseline)

Measures\models ASSC-N ASSC PCORR COov

Spherical k-means
F-measure (Improv. %) +  —00.18 £ 08.59 03.11 £ 07.37 02.24 £+ 08.47 05.75 + 08.46

Entropy (Improv. %) 0052+ 13.58 —0132+13.00 —03.92410.08 —07.35 % 07.96
Purity (Improv. %)%} —02.19 40485  01.064+0538 0210+ 06.14  04.94 & 07.85
VD" (Improv. %) | 02.88 £ 14.95 —00.85+12.67 —02.18+0847 —05.82+ 06.84
VI (Improv. %) | —02.69 1290 —03.26+ 1221 —03.91£09.56 —06.89 + 08.44
Run-time (fvfodel /fVSM) 03.65+£0410  0349+0370 0325+ 03.95 03.21 £03.83

HAC with complete-link
F-measure (Improv. %) 1 20.03 + 26.08 28.54 £+ 27.71 36.19 £+ 39.39 47.65 +45.73

Entropy (Improv. %) | —09.39 £24.67 —1516+21.76 —27.93+18.98 —33.53 + 14.88
Purity (Improv. %)1 1830 £21.03  26.66 £27.30 42,56 £4320  52.15+51.98
VD" (Improv. %) | —1690£2820 —2238+25.00 —2670+17.72 —33.29 +15.30
VI" (Improv. %) | —14.67 £22.81 —19.46+18.13 —25.09+16.86 —30.71 & 12.41
Run-time(fyodel /fVSM) 02.12+£0138  02.09+01.36 01.98 £01.45  02.00 + 01.47

HAC with average-link
F-measure (Improv. %) 1 —23.02 £24.23 —11.46+11.43 24.21 + 34.97 31.70 + 38.69

Entropy (Improv. %) | 44.11+£49.79  2020+26.60 —17.60+£13.18 —22.74 & 14.57
Purity (Improv. %) } —22.80+£21.88 —10.55+10.84  27.20+37.37 3543 +41.24
VD" (Improv. %)} 69.92 £ 100.87 3583+ 6487 —13.62+£2120 —20.70 £22.76
VI (Improv. %) 50.95+ 6544  19.61 £31.86 —17.72+14.93 —22.85+16.37
Run-time (Model /fvsM) 02.55+01.17 0249 +01.14  02.35+01.29 02.38 £01.33

Quality measures that are significantly superior/inferior to the VSM (using 7-test) are highlighted in
bold/italicized

the null-hypothesis is rejected and the semantic kernel is considered to achieve significant
improvement in this quality measure.

We also calculate the ratio of the run-time of different methods to the run-time of the
baseline method: rmodel = fmodel/ fbaseline- Lhe run-time of a method includes the time of
calculating the semantic kernel or the representation of documents in the semantic space,
and the time taken to cluster documents.

Table 2 shows, for each semantic similarity model, the average quality measures and run-
times relative to VSM-based kernels. For F'-measure and purity, positive values indicate that
the semantic kernel is better than the baseline, while for entropy, van Dongen and variation
of information, negative values indicate better performance. For quality measures, seman-
tic kernels that achieve significant improvement (for which the null-hypothesis of the 7-test
is rejected) are highlighted in bold, while semantic kernels are significantly inferior to the
baseline are italicized. If the ratio of run-time is greater than 1, this means that the method
takes longer time to run than the baseline method.

We can observe from Table 2 that using covariance-based semantic similarity (COV)
achieves significant improvements in all quality measures with the used clustering algo-
rithms. On the other hand, ASSC and ASSC_N achieve significant improvements with the
complete-link algorithm, and no significant improvements with spherical k-means. However,
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they are significantly inferior to the baseline when used with the average-link algorithm.
PCORR is significantly superior to the baseline for HAC algorithms.

We can also observe that improvements achieved with HAC algorithms are much higher
than those achieved with spherical k-means. We believe this is because partitional algorithms,
like spherical k-means, assign data points to cluster such that a global criterion function is
optimized. This criterion function is calculated based on the similarity measures between clus-
ter centroids and all data points. So, if there is errors in estimating some of these similarities
(e.g., between some document and a centroid), the effect of this errors will be compensated
by other measures of similarity (e.g., between the same document and other centroids). On
the other hand, HAC algorithms construct clusters in a hierarchical manner, by making a local
decision at each level of the hierarchy. In the case of HAC with complete linkage, clusters
are merged based on the most dissimilar points in each pair of clusters. If there is an error
in the estimate of similarity for this point, this will affect the rest of the cluster hierarchy.
The HAC algorithm with average linkage is however less sensitive to errors in estimating
similarity between documents as it merges two clusters based on the average of similarities
between all points in the two clusters. This means that in case of HAC algorithms, the better
the algorithm in estimating semantic similarity, the more the improvement in performance
of the hierarchial algorithms.

It should also be noted that there is a large variation in quality measures. For instance,
in the case of COV when used with HAC with complete-link, the F-measure is 47%45%.
This indicates that semantic similarity models achieve better performance for most of data
sets and worse performance for very few. For instance, semantic similarity models are not
expected to achieve significant improvements compared to VSM if most of the terms are
independent. In practical applications, it is suggested to test semantic similarity models on
a small validation set of documents for which the clusters are known, and evaluate whether
the proposed models achieve significant improvement for this particular type of documents
or not.

The use of semantic similarity models, however, increases the run-time of the clustering
algorithms. In the case of spherical k-means, although document vectors in the semantic space
has lower dimension than document vectors in the term space (n < m), they are non-sparse.
This makes the calculation of similarity between document vectors and centroids compu-
tationally more demanding. In the case of HAC algorithms, the run-time of the clustering
algorithm is almost the same, and the increase in run-time is mainly due to the calculation of
semantic kernels.

Based on these observations, we can conclude that using explicit models for semantic sim-
ilarity based on term—term covariance matrix (COV) achieves significant improvement in the
performance of the used algorithms for document clustering. This conclusion is consistent
with our analysis of different semantic kernels (see Sect. 3.2). However, the improvement in
performance comes at the cost of extra run-time. It should also be noted that semantic simi-
larity models could be more useful for data sets with extremely large number of documents.
For these data sets, the vector space will be extremely sparse and VSM-based similarity will
be less indicative. However, applying proposed models to extremely large data sets requires
distributed implementation, which is a subject of future work.

6.5 Evaluation of hybrid models
The second set of experiments evaluate the performance of the proposed hybrid models com-

pared to other document representation models. We compare VSM, COV (semantic similarity
based on covariance matrix), LSI, PCA and two hybrid models: LSI-COV (LSI with semantic
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similarity based on covariance matrix) and PCA-COV (PCA with semantic similarity based
on covariance matrix). We select the COV model as it achieves the best performance among
other models for explicitly estimating semantic similarity (as discussed in Sect. 6.4 ).

In the case of representation models that are based on dimension reduction, determining
the intrinsic dimension of the semantic space, d, is a common problem in all dimension
reduction techniques. Different heuristic exist for estimating d; however, none of them is
proved to achieve the best performance. In order to compare different representation models,
we used an approach similar to [1] in which the average of the best values of each quality
measure for different values of d is used to estimate the performance of the representation
model. In particular, we change the number of dimensions in the semantic space, d, from 5
to 100 with increments of 1, and evaluate all quality measures for each value of d. The best
10 values of each quality measure are obtained. The average and standard deviation of these
best values are calculated and used to represent the quality of the representation model.

To compare two representation models: My, M, for a specific clustering algorithm and
data set, the average and standard deviation of quality measures are calculated for both rep-
resentation models: (g1, s1) and (g2, s7) (for deterministic models, the standard deviation
is 0). The z-test is then used to assess the significance of one method with respect to the
other. We consider the null-hypothesis that the two methods are equivalent. The ¢-statistic is
calculated as:

1—92
jo DD
2 2
4%
nl+n2

where n and n; are the number of observations used to estimate g1 and g3, respectively. The
value of #-statistic is then compared to the critical value #.rjtica; Obtained from the #-distribu-
tion table for a 95% confidence interval. If # > fcritical, the null-hypothesis is rejected, and
the two representation models are considered inequivalent. In this case, if gy is better than
q2, the representation model M is considered superior to M> for this data set.

In this set of experiments, we use an approach similar to that suggested by Zhao and
Karypis [40] to compare two representation models over all data sets. In this approach, the
quality measures for a particular data set and clustering algorithm are normalized relative to
the best value of the quality measure obtained by using different representation models when
applying the same clustering algorithm to the same data set. We used relative versions of the
F-measure, quality and entropy. In the case of F-measure and purity, the relative measure
can be calculated by dividing the value of the quality measure by the maximum of all values:

F P

T max(F)) 7T max(P)’

In the case of entropy, the relative entropy E; is calculated by dividing the minimum value
of all entropy values by the original entropy values:

min(E)
—z

r =

The relative quality measures range from O to 1. The best representation models have rel-
ative quality measures that are close to 1. The higher the relative measures, the better is
the representation model. The relative quality measures are then averaged for different data
sets. The average values of relative quality measures for two representation models are then
compared by applying a statistical significance test on these averages. Similar to [40], we
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Table 3 Average of relative quality measures for different representation models and clustering algorithms

Models VSM cov LSI PCA LSI-COV PCA-COV
Algorithms Relative F-measure
Spherical k-means 0.9186 0.9668 0.9750 0.9640 0.9780 0.9676
HAC-complete 0.6633 0.9113 0.8503 0.8943 0.9828 0.9742
HAC-average 0.7109 0.8605 0.9160 0.9712 0.9662 0.9557
Algorithms Relative entropy
Spherical k-means 0.9000 0.9720 0.9706 0.9619 0.9529 0.9383
HAC-complete 0.5941 0.8897 0.8187 0.8879 0.9732 0.9616
HAC-average 0.6066 0.7887 0.9002 0.9824 0.9462 0.9493
Algorithms Relative purity
Spherical k-means 0.9408 0.9826 0.9850 0.9887 0.9857 0.9797
HAC-complete 0.6583 0.9136 0.8997 0.9382 0.9869 0.9809
HAC-average 0.6775 0.8296 0.9219 0.9873 0.9470 0.9517

Table 4 Comparison between different pairs of models (A, B) for each clustering algorithm based on
statistical significance (using z-test)

Models 12 1,3 14 15 16 23 24 25 26 34 35 36 45 46 56
Algorithms Relative F-measure
Spherical k-means <« <« = K K = = = = = = = = = =
HAC-complete < K K XK KK » =~  «x x x x x x x =
HAC-average K £ X K K = x x¥x = = x = = = =
Algorithms Relative entropy
Spherical k-means €« « € = = = = = = = = = = = =
HAC-complete < K K x x = = Kk ¥x x x x x x =
HAC-average ¥ XK K XK x x x x x == = = =
Algorithms Relative purity
Spherical k-means € @« <« K = = = = = = = = = = —
HAC-complete < ¥ XK X KX = = Kk Xx Xx x x x x =
HAC-average K X K KXx = «x x x = = = = = =

The symbols >, <, and = indicate that A is significantly superior, inferior, and equivalent to B, respectively

use the paired 7-test in which the original quality measures of one representation model M
are subtracted from their corresponding measures for the other representation model M for
all data sets. The distribution of these differences are tested for statistical significance. Pairs
of representation models for which the null-hypothesis is rejected are considered statistically
equivalent. In all #-tests, we use a confidence interval of 95%.

Table 3 shows the average of relative quality measures over all data sets for different
clustering algorithms. Measures for different pairs of representation models are compared
using significance tests. These comparisons are illustrated in Table 4. Each column represents
a comparison between two methods “A, B”. >, < and = indicate that A is significantly
superior, inferior and equivalent to B, respectively.
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We can observe from Tables 3 and 4 that using different representation models that cap-
ture semantic similarity achieve significant improvement (based on z-test) compared to the
basic VSM model for all clustering algorithms. However, the improvement is much larger in
the case of agglomerative algorithms than spherical k-means. For instance, when comparing
COV with VSM, the improvements in relative F'-measure are around 25% for HAC-complete,
15% for HAC-average and 5% for spherical k-means, respectively.

We can also observe from Table 4 that models that capture semantic similarity are sta-
tistically equivalent when used with the spherical k-means. In addition, COV is equivalent
to LSI (column 2, 3) for most of quality measures. On the other hand, for HAC-complete,
PCA is equivalent to COV (column 2, 4) and superior to LSI (column 3, 4) for all quality
measures. For HAC-average, PCA is superior to COV (column 2, 4) for all quality measures,
and equivalent to LSI (column 3, 4) for most of quality measures.

In the case of hybrid models LSI-COV and PCA-COV, we can observe that they are
superior to all other models when used with HAC-complete. For instance, when comparing
LSI-COV to LSI, the improvements with HAC-complete are around 13% in F-measure,
15% in entropy and 8% in purity. However, LSI-COV and PCA-COV are statistically equiv-
alent to LSI and PCA, respectively, for HAC-average and spherical k-means. LSI-COV and
PCA-COV (column 5,6) are statistically equivalent for all clustering algorithms.

Based on these observations, we can conclude that the effectiveness of different models
for estimating semantic similarity depends on how the clustering algorithm works. As dis-
cussed in Sect. 6.4, partitional algorithms, like spherical k-means, are more robust to noise
in calculating similarities between documents than hierarchical algorithms. We think that
is the reason why in the case of spherical k-means, there is no difference in performance
when using different models for estimating semantic similarity, and also the improvements
achieved by using semantic similarity are small compared to the improvement in the case of
HAC algorithms. In addition, that is why some latent models are better than explicit mod-
els for HAC algorithms, and hybrid models achieve large improvements compared to latent
models in the case of HAC algorithm with complete linkage.

Tables 5, 6, and 7 show, for each data set, the values of F-measure, entropy and purity
for the output clustering obtained using different clustering algorithms and document rep-
resentation models. For each data set and clustering algorithm (a row in the sub-table), the
representation models are divided into groups according to the statistical significance between
the distribution of their quality measures. The group of methods with the best values is high-
lighted in bold, while the group with the second best values is italicized. The numbers in these
tables are rounded to two decimal places. However, methods have been divided into groups
based on the statistical significance of actual numbers. We can observe that the proposed
representation models achieve the best performance for many data set, especially when the
hierarchical clustering with complete linkage is employed.

The improvement achieved by hybrid models with agglomerative algorithms comes at
the cost of additional time complexity. Although the calculation of the W can be done in an
efficient way as discussed in Sect. 4.1, the calculation of kernel K for HAC algorithms is
more computationally demanding as the matrix W is non-sparse.

6.6 Evaluation of explicit models with approximate multiplication

We finally evaluate the approach suggested in Sect. 5 to reduce the computational complex-
ity of calculating K. In these experiments, we randomly sample a subset of documents with
replacement and apply the method described in Sect. 5 to calculate R and K. We then apply
spherical k-means to the columns of R and HAC algorithms to the approximate semantic
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Table 5 F-measures of different representation models for each data set

Data sets\models VSM GVSM LSI PCA LSI-COV PCA-COV
Spherical k-means
20ng 0.41 0.54 0.55 0.56 0.56 0.55
Classic 0.67 0.72 0.66 0.70 0.62 0.69
fbis 0.58 0.58 0.58 0.57 0.59 0.59
Hitech 0.48 0.50 0.51 0.51 0.52 0.48
Reviews 0.74 0.73 0.74 0.71 0.77 0.69
lal2 0.72 0.73 0.73 0.72 0.73 0.73
tr31 0.67 0.70 0.69 0.68 0.70 0.69
trd1 0.67 0.67 0.72 0.71 0.68 0.70
re0 0.45 0.45 0.46 0.47 0.46 0.49
rel 0.47 0.48 0.50 0.49 0.49 0.48
kla 0.52 0.57 0.56 0.56 0.58 0.58
klb 0.72 0.75 0.78 0.69 0.77 0.71
wap 0.50 0.57 0.56 0.55 0.58 0.58
HAC with complete linkage
20ng 0.16 0.42 0.49 0.49 0.50 0.50
Classic 0.45 0.70 0.53 0.65 0.72 0.75
fbis 0.55 0.61 0.53 0.53 0.64 0.59
Hitech 0.33 0.49 0.44 0.48 0.50 0.50
Reviews 0.41 0.59 0.61 0.71 0.78 0.70
lal2 0.32 0.63 0.55 0.63 0.69 0.66
tr31 0.73 0.76 0.60 0.65 0.80 0.79
trd1 0.59 0.68 0.67 0.70 0.70 0.73
re0 0.41 0.46 0.48 0.48 0.47 0.51
rel 0.32 0.52 0.47 0.48 0.55 0.53
kla 0.46 0.61 0.58 0.57 0.62 0.64
klb 0.48 0.71 0.66 0.66 0.80 0.74
wap 0.52 0.59 0.57 0.57 0.62 0.64
HAC with average linkage
20ng 0.10 0.22 0.48 0.52 0.47 0.52
Classic 0.45 0.63 0.49 0.69 0.62 0.66
fbis 0.61 0.64 0.65 0.64 0.67 0.67
Hitech 0.33 0.53 0.48 0.51 0.55 0.50
Reviews 0.41 0.63 0.54 0.71 0.63 0.57
lal2 0.33 0.59 0.71 0.73 0.76 0.76
tr31 0.72 0.81 0.81 0.84 0.86 0.80
tr41 0.65 0.62 0.76 0.76 0.70 0.73
re0 0.41 0.50 0.49 0.51 0.52 0.51
rel 0.54 0.59 0.62 0.55 0.64 0.60
kla 0.52 0.54 0.60 0.63 0.61 0.62
klb 0.81 0.86 0.90 0.90 0.89 0.89
wap 0.53 0.54 0.60 0.63 0.61 0.63

The best group of models for each data set and algorithm is highlighted in bold, the second best group is

italicized
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Table 6 Entropy measures of different representation models for each data set

Data sets\models VSM GVSM LSI PCA LSI-COV PCA-COV
Spherical k-means
20ng 0.62 0.45 0.44 0.44 0.42 0.44
Classic 0.40 0.35 0.41 0.37 0.46 0.38
fbis 0.34 0.35 0.34 0.33 0.35 0.34
Hitech 0.65 0.62 0.65 0.65 0.63 0.65
Reviews 0.33 0.33 0.33 0.36 0.32 0.42
lal2 0.40 0.39 0.39 0.39 0.39 0.4
tr31 0.30 0.28 0.28 0.28 0.30 0.29
trd1 0.26 0.26 0.23 0.23 0.26 0.24
re0 0.38 0.37 0.37 0.37 0.37 0.36
rel 0.33 0.31 0.30 0.30 0.31 0.31
kla 0.37 0.32 0.33 0.33 0.33 0.33
klb 0.18 0.16 0.16 0.19 0.16 0.18
wap 0.37 0.32 0.32 0.32 0.32 0.32
HAC with complete linkage
20ng 0.89 0.58 0.50 0.51 0.49 0.49
Classic 0.92 0.44 0.67 0.52 0.48 0.39
fbis 0.44 0.36 0.37 0.38 0.34 0.36
Hitech 0.92 0.68 0.73 0.67 0.64 0.65
Reviews 0.85 0.56 0.56 0.42 0.37 0.43
lal2 0.91 0.50 0.60 0.53 0.47 0.49
tr31 0.31 0.27 0.40 0.34 0.25 0.26
trd1 0.35 0.23 0.25 0.24 0.25 0.23
re0 0.59 0.40 0.39 0.38 0.38 0.38
rel 0.59 0.31 0.33 0.33 0.31 0.31
kla 0.48 0.37 0.35 0.35 0.34 0.32
klb 0.55 0.21 0.30 0.22 0.17 0.20
wap 0.42 0.36 0.34 0.34 0.32 0.32
HAC with average linkage
20ng 0.97 0.77 0.50 0.47 0.50 0.47
Classic 0.93 0.50 0.71 0.43 0.50 0.45
fbis 0.43 0.37 0.34 0.33 0.32 0.33
Hitech 0.92 0.71 0.70 0.68 0.64 0.68
Reviews 0.87 0.57 0.67 0.45 0.53 0.61
lal2 0.94 0.60 0.48 0.43 0.43 0.42
tr31 0.36 0.24 0.24 0.21 0.21 0.23
tr41 0.35 0.34 0.23 0.23 0.26 0.25
re0 0.61 0.46 0.39 0.38 0.39 0.40
rel 0.40 0.34 0.30 0.29 0.29 0.28
kla 0.47 0.44 0.36 0.35 0.37 0.35
klb 0.31 0.19 0.15 0.16 0.15 0.15
wap 0.45 0.44 0.34 0.34 0.36 0.34

The best group of models for each data set and algorithm is highlighted in bold, the second best group is

italicized
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Table 7 Purity measures of different representation models for each data set

Data sets\models VSM GVSM LSI PCA LSI-COV PCA-COV
Spherical k-means
20ng 0.40 0.52 0.54 0.55 0.55 0.54
Classic 0.76 0.75 0.75 0.79 0.72 0.78
fbis 0.68 0.68 0.69 0.69 0.69 0.70
Hitech 0.54 0.57 0.56 0.57 0.57 0.55
Reviews 0.80 0.82 0.80 0.79 0.82 0.75
lal2 0.78 0.79 0.79 0.78 0.79 0.78
tr31 0.78 0.80 0.80 0.81 0.79 0.79
trd1 0.78 0.79 0.81 0.81 0.80 0.81
re0 0.65 0.67 0.68 0.69 0.68 0.69
rel 0.66 0.69 0.69 0.69 0.69 0.69
kla 0.65 0.69 0.68 0.69 0.68 0.68
klb 0.85 0.87 0.87 0.84 0.87 0.85
wap 0.64 0.70 0.69 0.70 0.70 0.70
HAC with complete linkage
20ng 0.13 0.38 0.47 0.46 0.48 0.47
Classic 0.45 0.70 0.57 0.67 0.71 0.77
fbis 0.60 0.66 0.65 0.64 0.68 0.65
Hitech 0.28 0.51 047 0.52 0.55 0.54
Reviews 0.38 0.57 0.66 0.75 0.80 0.74
lal2 0.32 0.68 0.58 0.65 0.72 0.69
tr31 0.78 0.78 0.70 0.74 0.83 0.83
trd1 0.72 0.80 0.79 0.80 0.81 0.83
re0 0.47 0.65 0.66 0.66 0.66 0.66
rel 0.41 0.68 0.66 0.66 0.68 0.69
kla 0.52 0.63 0.65 0.65 0.67 0.70
klb 0.63 0.84 0.80 0.83 0.89 0.84
wap 0.58 0.64 0.67 0.67 0.69 0.70
HAC with average linkage
20ng 0.07 0.16 0.46 0.50 0.42 0.49
Classic 0.45 0.62 0.51 0.76 0.63 0.69
fbis 0.62 0.67 0.69 0.70 0.71 0.70
Hitech 0.27 0.52 0.48 0.51 0.56 0.50
Reviews 0.35 0.57 0.51 0.73 0.58 0.55
lal2 0.30 0.58 0.73 0.75 0.77 0.76
tr31 0.76 0.85 0.85 0.88 0.88 0.85
tr41 0.72 0.72 0.83 0.83 0.79 0.81
re0 0.48 0.61 0.66 0.67 0.65 0.64
rel 0.62 0.66 0.72 0.70 0.72 0.72
kla 0.53 0.54 0.65 0.67 0.64 0.66
klb 0.85 0.86 0.90 0.90 0.89 0.89
wap 0.54 0.55 0.68 0.68 0.66 0.67

The best group of models for each data set and algorithm is highlighted in bold, the second best group is

italicized
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Table 8 The average improvements in quality measures and run-times relative to VSM (baseline) for models
of semantic similarity with approximate matrix multiplication

Measures\models COV-10% COV-20% COV-100%
Spherical k-means
F-measure(Improv. %) 1 03.48 + 06.44 04.99 + 08.43 05.75 + 08.46
Entropy (Improv. %) |, —03.34 £+ 06.39 -06.01 + 07.37 -07.35 + 07.96
Purity (Improv. %)% 03.09 + 05.86 04.46 £ 07.62 04.94 £+ 07.85
VD" (Improv. %), —-03.30 &+ 06.36 -05.35 + 07.25 —-05.82 + 06.84
VI"(Improv. %), —03.16 + 06.15 -05.62 + 07.49 —-06.89 + 08.44
Run-time (f\odel/tVSM) 01.25 £01.61 01.84 £ 02.62 03.21 £ 03.83
HAC with complete-link
F-measure (Improv. %) 1 36.54 + 34.38 39.28 £+ 39.11 47.65 +45.73
Entropy (Improv. %) |, -25.06 + 17.90 -27.78 + 17.06 -33.53 +14.88
Purity (Improv. %)% 43.54 +41.21 45.96 1 45.48 52.15 +51.98
VD" (Improv. %), -26.08 + 18.24 -27.78 £ 17.49 -33.29 +15.30
VI"(Improv. %), -22.44 +15.32 -24.93 + 14.66 -30.71 + 12.41
Run-time (fModel/tVSM) 01.17 £ 00.41 01.37 £ 00.53 02.00 £ 01.47
HAC with average-link
F-measure (Improv. %) 1 25.21 + 37.84 21.25 +29.71 31.70 + 38.69
Entropy (Improv. %) |, -15.36 + 13.81 -14.10 + 14.32 -22.74 + 14.57
Purity (Improv. %)t 29.80 + 42.29 23.77 £+ 31.21 3543 +41.24
VD" (Improv. %), -10.83 + 26.54 -12.18 +24.21 -20.70 + 22.76
VI"(Improv. %), -14.38 + 18.69 -15.00 £+ 18.13 -22.85 +16.37
Run-time (Model /tVSM) 01.44 £ 00.23 01.69 £ 00.37 02.38 £ 01.33

Quality measures that are significantly superior to the VSM (using 7-test) are highlighted in bold

kernel K . We compare the output clusters to ground-truth partitioning and calculate the qual-
ity measures for each data set. We repeat this experiment with 20 different subsets of sampled
documents and calculate the average of all quality measures for different experiments. We
then calculate the improvement in average quality measures relative to VSM for each data
set using Eq. (16), and then calculate the average and standard deviation of improvements in
quality measures (using the same approach in Sect. 6.4.) We also conducted ¢-test with 95%
confidence interval to test the statistical significance of the improvements.

In this set experiments, we use semantic similarity models based on covariance matrix
(COV) as they achieve superior performance to other semantic similarity models based on
term—term correlations.

Table 8 shows the improvements in average quality measures as well as the run-times when
COV model is used with only 10 and 20% of documents selected. We can observe from table
that using similarity models based a small subset of documents outperforms VSM, and the
achieved improvements are large percentages of the improvement achieved by the COV model
with the whole set of documents. We can also observe that the computational complexity is
reduced to less than 1.5 times when 10% of documents are used. We could conclude that the
choice of the number of documents used for calculating term—term correlations is a trade-off
between clustering performance and computational complexity.
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7 Conclusions and future work

In this work, the effectiveness of document clustering algorithms has been improved by using
similarity models based on statistical correlations between terms. We first define different
representation models that explicitly estimate semantic similarity based on term—term cor-
relations. These models are theoretically analyzed, and their performance with different
clustering algorithms is evaluated. Results show that similarity models based on covariance
matrix between terms achieve the best performance.

In addition, the paper proposes hybrid models for document representation that capture
statistical similarity by applying dimension reduction techniques in a semantic space. The
paper studies the effectiveness of hybrid models in enhancing document clustering and com-
pares them to well-known models for document representation. Results show that hybrid
models are either statistically significant or equivalent to other representation models that
capture semantic similarity between documents. Clustering algorithms that are based on mak-
ing local decisions, such as hierarchical algorithms, are more sensitive to errors in estimating
document similarity, and accordingly benefit more from the proposed models.

We finally propose the use of approximate matrix multiplication to reduce computational
complexity. A low-dimension representation for documents is calculated based on random
sampling with replacement. Experiments show that using this random sampling considerably
reduces the run-time while maintaining much of the improvement achieved by the semantic
similarity models in the document clustering task.

Future work in semantic analysis for enhancing document clustering includes the study
of the problem of determining the intrinsic dimensionality for hybrid models, and other
approaches to reduce the computational complexity of semantic mapping and dimension
reduction. A distributed implementation of the proposed models to run on extremely large
data sets is also a subject of future work.
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