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This chapter describes the current state of the ongoing Xcyt research program.  Xcyt is a software system that provides expert diagnosis and prognosis of breast cancer based on fine needle aspirates.  The system combines techniques of digital image analysis, inductive machine learning, mathematical programming, and statistics, including novel prediction methods developed specifically to make best use of the cytological data available.  The result is a program that diagnoses breast masses with an accuracy of over 97%, and predicts recurrence of malignant samples without requiring lymph node extraction.  The software is available for execution over the Internet, providing previously unavailable predictive accuracy to remote medical facilities.

1 Introduction

This paper summarizes the current state of the Xcyt project, an ongoing interdisciplinary research effort begun at the University of Wisconsin-Madison in the early 1990’s.  The project addresses two important problems in breast cancer treatment: diagnosis (determination of benign from malignant cases) and prognosis (prediction of the long-term course of the disease).  The resulting software system provides accurate and interpretable results to both doctor and patient to aid in the various decision-making steps in the diagnosis and treatment of the disease.

The diagnosis problem can be viewed along two axes.  Foremost of these is accuracy; the ultimate measure of any predictive system is whether it is accurate enough to be used with confidence in a clinical setting.  We also consider invasiveness; the determination of whether or not a breast mass is malignant should ideally be minimally invasive.  In this light we can view the spectrum of diagnostic techniques to range from mammography, which is non-invasive but provides imperfect diagnostic information, to pathologic examination of excised masses, which is maximally invasive but resolves the diagnosis question completely.  In our work we take a middle ground, seeking accurate predictions from fine needle aspiration (FNA).  This minimally invasive procedure involves the insertion of a small-gauge needle into a localized breast mass and the extraction of a small amount of cellular material.  The cellular morphometry of this sample, together with the computerized analysis described below, provides diagnoses as accurate as any non-surgical procedure.  The minimally invasive nature of the procedure allows it to be performed on an outpatient basis, and its accuracy on visually indeterminate cases helps avoid unnecessary surgeries.

Once a breast mass has been diagnosed as malignant, the next issue to be addressed is that of prognosis.  Different cancers behave differently, with some metastasizing much more aggressively than others.  Based on a prediction of this aggressiveness, the patient may opt for different post-operative treatment regimens, including adjunctive chemotherapy or even bone marrow transplant.  Traditionally, breast cancer staging is performed primarily using two pieces of information
: the size of the excised tumor, and the presence of cancerous cells in lymph nodes removed from the patient’s armpit.  However, the removal of these axillary nodes is not without attendant morbidity.  A patient undergoing this procedure suffers from an increased risk of infection, and a certain number contract lymphedema, a painful swelling of the arm.  We therefore wish to perform accurate prognostic prediction without using the most widely-used predictive factor, lymph node status.  The techniques described here are an attempt to extract the maximum possible prognostic information from a precise morphometric analysis of the individual tumor cells, along with the size of the tumor itself.

Underlying our approach to both of these problems is a two-stage methodology that has become widely accepted and successful in many different medical domains.  The first stage is computerized image analysis, in our case, the morphometric analysis of cell nuclei to quantify predictive features such as size, shape and texture.  The second stage involves the use of these features in inductive machine learning techniques, which use cases with a known (or partially known) outcome to build a mapping from the input features to the decision variable of interest.  The entire process can be viewed as a data mining task, in which we search and summarize the information in a digital image to determine either diagnosis (benign or malignant) or prognosis (predicted time of recurrence).

Of course, a medical decision-making system is valuable only if it is actually being used in a clinical setting.  In order to gain widespread use and acceptance of the Xcyt system, we are making it available for remote execution via the WorldWide Web.  In this way, we can provide highly accurate predictive systems even in the most isolated medical facility.

The remainder of the paper is organized as follows.  Section 2 describes the details of our image analysis system, which extracts descriptive features from the prepared sample.  In Section 3, we show the inductive learning technique that was used to solve the diagnostic problem.  Two different methods for prognosis are shown in Section 4.  Section 5 summarizes the technical issues involved with making Xcyt remotely executable.  Finally, Section 6 summarizes the paper.

2 Imaging

Previous research has demonstrated that the morphometry of cell nuclei in breast cancer samples are predictive for both diagnosis [41] and prognosis [7].  However, visual grading of nuclei is imprecise and subject to wide variation between observers.  Therefore, the first task we address is the quantification of various characteristics of the nuclei captured in a digital image.  We describe a three-stage approach to this analysis.  First, the nuclei are located using a template-matching algorithm.  Second, the exact boundaries of the nuclei are found, allowing for very precise calculation of the nuclear features.  Finally, the features themselves are computed, giving the raw material for the predictive methods.

2.1 Sample Preparation

Cytological samples were collected from a consecutive series of patients with palpable breast masses at the University of Wisconsin Hospitals and Clinics beginning in 1984.  A small amount of fluid is removed from each mass using a small-gauge needle.  This sample, known as a fine needle aspirate (FNA), is placed on a glass slide and stained to highlight the nuclei of the constituent cells.  A region of the slide is then selected visually by the attending physician and digitized using a video camera mounted on a microscope.  The region is selected based on the presence of easily differentiable cell nuclei.  Because of the relatively low level of magnification used (63(), the image may contain anywhere from approximately 5 to 200 nuclei.  One such image is shown in Figure 1.  Subsequent images are shown in gray scale, as our analysis does not require color information.
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Figure 1.  A digital image taken from a breast FNA.

2.2 Automatic Detection of Nuclei

Most image analysis systems rely on the user to define the region of interest.  Indeed, the first version of the Xcyt software took this approach, refining user-defined boundaries in the manner described in the next section.  To maximize operator independence and minimize user tedium, we have since developed an automatic method for detection and initial outlining of the nuclei.  This method is based on the generalized Hough transform.

The generalized Hough transform (GHT) is a robust and powerful template-matching algorithm to detect an arbitrary, but known, shape in a digital image.  Cell nuclei in our images are generally elliptical, but their size and exact shape vary widely.  Therefore, our system performs the GHT with many different sizes and shapes of templates.  After these GHTs are completed, the templates that best match regions of the image are chosen as matches for the corresponding nuclei.

The idea underlying both the original [18] and generalized Hough transforms [3] is the translation from image space (x and y coordinates) to a parameter space, representing the parameters of the desired shape.  For instance, if we want to find lines in an image, we could choose a two-dimensional parameter space of slope m and intercept b.  The parameter space is represented as an accumulator array, in which image pixels that may correspond to points on the shape “vote” for the parameters of the shape to which they belong.  

Specifically, in the generalized Hough transform, a template representing the desired shape, along with a single reference point (for instance, the center), is constructed. The shape of the template is the same as the shape to be detected, but reflected through the reference point.  Using this template, every edge pixel in the image votes for the possible x and y values that may correspond to the template reference point, if the edge pixel belongs to the desired shape.  At the conclusion of the algorithm, high values in the accumulator will correspond to the best matches for the reference point of the desired shape.

In preparation for the template-matching step the image undergoes several preprocessing steps.  First, a median filter [19] is applied to reduce image noise and smooth edges.  We then perform edge detection to find pixels in the image that display a sharp gray-scale discontinuity.  The Sobel edge detection method [4] is used to find both the magnitude and the direction of the edge gradients.  Finally, the edges are thinned to improve processing speed.  These steps are represented in Figure 2.
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Figure 2.  Image pre-processing steps: (a) median filtering (b) Sobel edge detection (c) edge thinning

A straightforward implementation of the generalized Hough transform to find ellipses would require a five-dimensional parameter space: image coordinates x and y, ellipse axis sizes a and b, and ellipse rotation angle (.  In order to conserve space and avoid the difficulty of searching for peak points in a sparse five-dimensional accumulator, we adopted the following iterative approach [28].  An elliptical template is constructed using values of a, b and (.  A single GHT is performed using this template, using a two-dimensional local accumulator A1 of the same size as the original image.  The process is then repeated for each possible value of a, b and (.  After each GHT, the values in the local accumulator are compared to a single global accumulator A2.  The values in A2 are the maximum values for each pixel found in any of the local accumulators.  This is reasonable since we are only interested in the determining the best-matching template for any given pixel.  The iterative GHT thus reduces the use of memory from ((|x| |y| |a| |b| |c|) to ((|x| |y|), where |i| represents the cardinality of the parameter i.  This process is shown in Figure 3.

Following the completion of the iterative GHT, we wish to find the peak points in the global accumulator, which correspond to a close match of the edge pixels in the image with a particular template.  However, it is often the case that a nucleus that does not closely match any of the templates will result in a plateau of relatively high accumulator values.  This effect is mitigated by peak-sharpening, a filtering step applied to the global accumulator that increases the value of a point near the center of a plateau.  Finally, the peak points are found, beginning with the highest and continuing until a user-defined stopping point is reached.
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Figure 3.  Example of GHT with three different templates.  Higher values in the accumulators are shown as darker pixels.

The above algorithm achieves both high positive predictive value (percentage of chosen templates that closely match the corresponding nuclei) and sensitivity (percentage of nuclei in the image that are actually found) as judged by a human operator.  Experiments on two very different images resulted in both sensitivity and positive predictive value measures of over 80%. Figure 4 shows one of the images overlaid with the matching templates. The positive predictive value is naturally higher in the early stages of the matching process; hence, for images such as the one shown in Figure 4, the user would discontinue the search long before it dropped as low as 80%.  For instance, at the point where the system has matched 55 templates in this image, only one of the resulting outlines is incorrect, a positive predictive value of over 98%.  In most cases, outlining about 20 or 30 nuclei is sufficient to reliably compute the values of the morphometric features (described in Section 2.5).  

Figure 4.  Result of generalized Hough transform on sample image.


2.3 Representation of Nuclear Boundaries

The desired quantification of nuclear shape requires a very precise representation of boundaries.  These are generated with the aid of a deformable spline technique known as a snake [21].  The snake seeks to minimize an energy function defined over the arclength of the curve.  The energy function is defined in such a way that the minimum value should occur when the curve accurately corresponds to the boundary of a nucleus.  This energy function is defined as follows:
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Here E represents the total energy integrated along the arclength s of the spline.  The energy is a weighted sum of three components Econt, Ecurv and Eimage with respective weights (, ( and (.  The continuity energy Econt penalizes discontinuities in the curve.  The curvature energy Ecurv penalizes areas of the curve with abnormally high or low curvature, so that the curve tends to form a circle in the absence of other information.  The spline is tied to the underlying image using the image energy term Eimage.  Here we again use a Sobel edge detector to measure the edge magnitude and direction at each point along the curve.  Points with a strong gray-scale discontinuity in the appropriate direction are given low energy; others are given a high energy.  The constants are empirically set so that this term dominates.  Hence, the snake will settle along a boundary when edge information is available. The ( weight is set high enough that, in areas of occlusion or poor focus, the snake forms an arc, in a manner similar to how a person might outline the same object.  This results in a small degree of “rounding” of the resulting contour.  Our experiments indicate that this reduces operator dependence and makes only a small change in the value of the computed features.

The snakes are initialized using the elliptic approximations found by the Hough transform described in the previous section.  They may also be initialized manually by the operator using the mouse pointer.  To simplify the necessary processing, the energy function is computed at a number of discrete points along the curve.  A greedy optimization method [40] is used to move the snake points to a local minimum of the energy space.

2.4 Algorithmic Improvements

The two-stage approach of using the Hough transform for object detection and the snakes for boundary definition results in precise outlines of the well-defined nuclei in the cytological images.  However, the Hough transform is very computationally expensive, requiring several minutes to search for nuclei in the observed size range.  We have recently designed two heuristic approaches to reducing this computational load [23].

First, the user is given the option of performing the GHT on a scaled version of the image.  This results in a rather imprecise location of the nuclei but runs about an order of magnitude faster.  The GHT can then be performed on a small region of the full-sized image to precisely locate the suspected nucleus and determine the correct matching template.  Our experiments indicate that this results in an acceptably small degradation of accuracy.
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Figure 5.  Results of the nuclear location algorithm on two sample images.

Second, we allow the GHT to be “seeded” with an initial boundary initialized by the user.  The GHT then searches only for nuclei of about the same size as that drawn by the user.  This results in a reduced search space and, again, a significant speed-up with minimal accuracy reduction.  Results on two dissimilar images are shown in Figure 5.  Snakes that fail to successfully conform to a nuclear boundary can be manually deleted by the user and initialized using the mouse pointer.  The use of these semi-automatic object recognition techniques minimizes the dependence on a careful operator, resulting in more reliable and repeatable results.

2.5 Nuclear Morphometric Features

The following nuclear features are computed for each identified nucleus [38].

· Radius: average length of a radial line segment, from  center of mass to a snake point

· Perimeter: distance around the boundary, calculated by measuring the distance between adjacent snake points

· Area: number of pixels in the interior of the nucleus, plus one-half of the pixels on the perimeter

· Compactness: perimeter2 / area

· Smoothness: average difference in length of adjacent radial lines

· Concavity: size of any indentations in nuclear border

· Concave points: number of points on the boundary that lie on an indentation

· Symmetry: relative difference in length between line segments perpendicular to and on either side of the major axis

· Fractal dimension: the fractal dimension of the boundary based on the “coastline approximation” [25]

· Texture: variance of gray-scale level of internal pixels

The system computes the mean value, extreme or largest value, and standard error of each of these ten features, resulting in a total of 30 predictive features for each sample.  These features are used as the input in the predictive methods described in the next section. 

3 Diagnosis

We frame the diagnosis problem as that of determining whether a previously detected breast lump is benign or malignant.  There are three popular methods for diagnosing breast cancer: mammography, FNA with visual interpretation, and surgical biopsy.  The reported sensitivity (i.e., the ability to correctly diagnose cancer when the disease is present) of mammography varies from 68% to 79% [14], of FNA with visual interpretation from 65% to 98% [15], and of surgical biopsy close to 100%.  Therefore, mammography lacks sensitivity, FNA sensitivity varies widely, and surgical biopsy, although accurate, is invasive, time consuming, and costly.  The goal of the diagnostic aspect of our research is to develop a relatively objective system that diagnoses FNAs with an accuracy that approaches the best achieved visually.

3.1 MSM-T: Machine Learning via Linear Programming

The image analysis system described previously represents the information present in a digital image as a 30-dimensional vector of feature values.  This analysis was performed on a set of 569 images for which the true diagnosis was known, either by surgical biopsy (for malignant cases) or by subsequent periodic medical exams (for benign cases).  The resulting 569 feature vectors, along with the known outcomes, represent a training set with which a classifier can be constructed to diagnose future examples.  These examples were used to train a linear programming-based diagnostic system by a variant of the multisurface method (MSM) [26,27] called MSM-Tree (MSM-T) [5], which we briefly describe now.

Let m malignant n-dimensional vectors be stored in the m ( n matrix A, and k benign n-dimensional points be stored in the k ( n matrix B.  The points in A and B are strictly separable by a plane in the n-dimensional real space 
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, and e is a vector of ones of appropriate dimension.  In general the two sets will not be strictly linearly separable and the inequalities (3) will not be satisfied.  Hence, we attempt to satisfy them approximately by minimizing the average sum of their violations by solving the linear program:
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The linear program will generate a strict separating plane (2) that satisfies (3) if such a plane exists, in which case y = 0, z = 0.  Otherwise, it will minimize the average sum of the violations y and z of the inequalities (3).  This intuitively plausible linear program has significant theoretical and computational consequences [6], such as naturally eliminating the null point w = 0 from being a solution.  Once the plane xTw = (  has been obtained, the same procedure can be applied recursively to one or both of the newly created halfspaces xTw > ( and xTw < (, if warranted by the presence of an unacceptable mixture of benign and malignant points in the halfspace.  Figure 6 shows an example of the types of planes generated by MSM-T.  MSM-T has been shown [5] to learn concepts as well or better than more well-known decision tree learning methods such as C4.5 [30] and CART [10].
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Figure 6.  MSM-T separating planes.

The goal of any inductive learning procedure is to produce a classifier that generalizes well to unseen cases.  This generalization can often be improved by imposing a simplicity bias on the classification method in order to avoid memorizing details of the particular training set.  In our case, better generalization was achieved by reducing the number of input features considered.  We performed a global search through the dimensions of the feature space, generating classifiers with a small number of planes and evaluating promising classifiers using cross-validation [35] to estimate their true accuracy.  The best results were obtained with one plane and three features: extreme area, extreme smoothness, and mean texture.  The predicted accuracy, estimated with cross-validation, was 97.5%.  The estimated sensitivity and positive predictive value were both 96.7%, and the estimated specificity was 98.0%.  This level of accuracy is as good as the best results achieved at specialized cancer institutions.

Xcyt also uses the Parzen window density estimation technique [29] to estimate the probability of malignancy for new patients.  All the points used to generate the separating plane xTw = ( in the 3-dimensional space were projected on the normal w to the separating plane.  Using the Parzen window kernel technique, we then “count” the number of benign and malignant points at each position along the normal, thus associating a number of malignant and benign points with each point along this normal.  Figure 7 depicts densities obtained in this fashion using the 357 benign points and 212 malignant points projected onto the normal.  The probability of malignancy for a new case can then be computed with a simple Bayesian computation, taking the height of the malignant density divided by the sum of the two densities at that point and adjusting for the prior probability of malignancy.
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Figure 7.  Densities of the benign and malignant points relative to the separating plane.

3.2 Predictive Results and Clinical Usage

The Xcyt diagnostic system has been in clinical use at the University of Wisconsin since 1993.  In that period, the classifier has achieved 97.6% accuracy on the 330 consecutive new cases that it has diagnosed (223 benign, 107 malignant).  The true sensitivity and positive predictive value are 96.3%, and the true specificity is 98.2%.  Note the remarkably close match to the estimated predictive accuracies in the previous section.  

Analysis and diagnosis of the FNA for a new patient can be performed in a few minutes by the attending physician using Xcyt.  Once the FNA slide from a new patient has been analyzed, the patient is shown a density diagram as in Figure 7 along with the value of xTw for the sample.  The patient can then easily appraise the diagnosis in relation to hundreds of other cases, in much the same way that an experienced physician takes advantage of years of experience.  Thus the patient has a better basis on which to base a treatment decision.  For instance, a value of xTw falling in the region of Figure 7 where the densities overlap would correspond to a “suspicious” diagnosis.  In particular, when the probability of malignancy is between 0.3 and 0.7, it is considered to be indeterminate and a biopsy is recommended.  This is a rare case, as only 10 of the 330 new cases have fallen into this suspicious region.  Different patients may have very different reactions to the same readings.  Masses from patients who opt for surgical biopsy have their diagnosis histologically confirmed.  Patients who choose not to have the biopsy done are followed for a year at three-month intervals to check for changes in the mass.

We have successfully tested Xcyt on slides and images from researchers at other institutions who used the same preparation method.  In one such study [39], a series of 56 indeterminate samples from Vanderbilt University Hospital (approximately, the most difficult 7% of their cases) were diagnosed with 75% accuracy, 73.7% sensitivity and 75.7% specificity.  A slight difference in the method of slide preparation caused several of the specimens to render false negative results.

4 Prognosis

A significantly more difficult prediction problem in breast cancer treatment is the determination of long-term prognosis.  Several researchers, beginning with Black et al. [7], have shown evidence that cellular features observed at the time of diagnosis can be used to predict whether or not the disease will metastasize elsewhere in the body following surgery.  However, with the widespread use of the TNM (tumor size, lymph node, metastasis) staging system [16], nuclear grade is now rarely used as a prognostic indicator.  Instead, decisions regarding post-operative treatment regimens are typically based primarily on the spread of the disease to axillary lymph nodes.  Node-positive patients usually undergo post-operative chemotherapy and/or radiation therapy to slow or prevent the spread of the cancer.   Surgical removal of these nodes, however, leaves the patient at increased risk for infection, as well as a risk of arm lymphedema [2], a painful swelling of the arm.  Estimates of the incidence rate for lymphedema among breast cancer patients range from 10% to over 50%.  Moreover, node dissection does not contribute to curing the disease [1].  Therefore, the focus of our research has been the clinical staging of breast cancer without using lymph node information.

Our attempt to get the maximum prognostic information from precisely measured nuclear “grade” (possibly together with tumor size) should be viewed in the broader context of breast prognostic factors, and area that has received much attention in recent years.  In particular, many researchers have proposed the use of factors such as hormone receptor status (estrogen and progesterone) and biological factors (for instance, p53 expression) for prognostic staging.  While we do not discount these approaches, we feel there is value in a system that derives prognostic predictions from the most readily available factors without the need for additional tests, and we note that many of new prognostic factors do not fare well in follow-up studies [17].  It has also been suggested that sentinel node extraction provides the value of the lymph node metastasis information while minimizing the risk of infection and lymphedema.  While we applaud this attention to patient morbidity, minimizing a risk is still not the same as eliminating it.  Finally, the long-standing assumption on which we base our effort is that axillary lymph dissection does not affect survival or disease-free survival rates in patients without significant tumor mass in the axilla.  This assumption has recently been called into question [8].  However, pending confirmation of the hypothesis that lymph dissection leads to higher survival rates, the goal of this line of research remains the same.

The prediction of breast cancer recurrence is an example of survival data analysis.  We would like to predict a time of distant recurrence or death based on predictive features available at the time of diagnosis or surgery.  The problem is complicated by the fact that, for many patients, the endpoint is unavailable.  For instance, the patient may change doctors, or die from some unrelated cause.  The available data are therefore right censored, in that we know only a lower bound (last known disease-free time following surgery) for many of the cases, rather than an actual endpoint.

Our earlier work [37] framed the prediction of recurrence as an explicit optimization problem, known as the Recurrence Surface Approximation.  While the predictive model was limited in its expressiveness, the RSA demonstrated that nuclear morphometric features could predict recurrence as well as lymph node status.  Two more recent approaches are reviewed here.  The first is a simple discrimination of samples into prognostic groups based on one nuclear feature and one traditional feature, tumor size.  The second uses an artificial neural network approach to achieve a more fine-grained prognosis.  Experiments with both of these methods indicate that they are superior to the traditional lymph node differentiation.

In these studies a subset of the diagnostic data set was used, consisting of those cancerous patients for whom follow-up data was available.  We removed from this set the patients with ductal carcinoma in situ (for whom prognosis is very good) and those with distant metastasis at time of surgery (for whom prognosis is very poor), thus focusing on the more difficult cases.

4.1 Median-based Separation

We first describe a recent attempt [43] to use simple statistical analyses to separate the cases into three prognostic groups: good, intermediate, and poor.  The first step was to use a traditional approach to survival data analysis, Cox proportional-hazards regression [13], to rank the available predictive features based on their individual ability to predict time of recurrence.  The features under consideration were the thirty nuclear features from the diagnosis study along with tumor size and lymph node status.  The size of the tumor was found to correlate most strongly with outcome, with largest nuclear perimeter ranking second and lymph node status 7th.  This analysis was repeated using breast cancer specific survival as the endpoint, with similar results.

Life table analysis [22] was then performed for each pair of the three prognostic features, tumor size, largest perimeter, and lymph node positivity.  Patients were assigned to groups based on the median split for tumor size (2.4 cm), for largest perimeter (38.6 micra) and for lymph node status.  This created four groups for tumor size and largest perimeter: small size, small perimeter (SS/SP); small size, large perimeter (SS/LP); large size, small perimeter (LS/SP); and large size, large perimeter (SS/LP).  This is illustrated in Figure 8 where individual values for patients recurring or not recurring relative to the median-value cut points for tumor size and largest perimeter are shown.  Similarly, the patients above and below the median split values for tumor size and largest perimeter were paired according to node positive (Node +) or node negative (Node () to give four groups each.  Prognostic groups were formed by considering those cases for which both features were above the median as the “poor” group, and those cases for which both features were below the median as the “good” group.  Those cases for which one feature was above the median and the other below were combined to form the “intermediate” group.
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Figure 8.  Distribution of recurrent and non-recurrent cases relative to median cutoffs for largest perimeter and tumor size.

Tables 1 and 2 show five-year and ten-year disease-free survival probabilities and breast cancer-specific survival probabilities, respectively, for each of the three pairs of prognostic predictors.  In both cases, the pairing of tumor size and largest perimeter formed the strongest prognostic groups.  This is confirmed in Table 3, which shows the p-values associated with the separation between the groups.  Hence we have shown that the combination of tumor size and nuclear perimeter does a better job of separating patients into good and poor prognostic groups than either the traditional pairing of lymph node status and tumor size or the combination of nodal status with perimeter.

Table 1.  Distant disease-free survival ± Standard error (%).  Node: Axillary lymph node positivity. Size: Tumor size LP: Largest nuclear perimeter


5 Year
10 Year


Good
Intermed.
Poor
Good
Intermed.
Poor

Node&Size
85.1 ± 4.6
77.3 ± 4.8
55.1 ± 5.8
77.4 ± 6.7
71.5 ± 6.0
42.9 ± 6.6

Node&LP
87.4 ± 4.5
74.2 ± 4.6
55.0 ± 6.2
79.8 ± 6.6
64.7 ± 6.0
45.0 ± 7.3

Size&LP
94.8 ± 2.9
68.2 ± 5.0
55.9 ± 6.2
87.6 ± 5.6
58.1 ± 6.3
46.3 ± 7.2

Table 2.  Breast cancer-specific survival ± Standard error (%)


5 Year
10 Year


Good
Intermed.
Poor
Good
Intermed.
Poor

Node&Size
89.9 ± 3.9
90.3 ± 3.5
62.5 ± 5.7
85.8 ± 5.5
78.3 ± 6.4
54.7 ± 6.5

Node&LP
98.2 ± 1.8
81.6 ± 4.1
63.5 ± 6.1
90.1 ± 5.7
76.6 ± 5.2
50.1 ± 7.6

Size&LP
96.5 ± 2.4
88.4 ± 4.0
60.6 ± 6.1
92.8 ± 4.3
73.4 ± 6.2
51.3 ± 7.2

Table 3.  Wilcoxon (Gehan) p values for significance between groups



Distant Disease-free Survival
Breast Cancer-specific Survival


Good vs. Poor
Good vs. Inter.
Inter. vs. Poor 
Good vs. Poor
Good vs. Inter.
Inter. vs Poor

Node/Size
<0.0001
0.1877
0.0002
0.0002
0.9124
0.0001

Node/LP
<0.0001
0.0393
0.0021
<0.0001
0.0093
0.0006

Size/LP
<0.0001
0.0001
0.0114
<0.0001
0.0151
<0.0001

4.2 A Neural Network Approach

A number of researchers have used machine learning techniques such as decision trees [42], unsupervised learning [9,34] and artificial neural networks [11,31,32] to predict breast cancer recurrence.  Our most recent approach [36] uses a standard neural network trained with backpropagation [33] to produce precise and accurate predictions of recurrence time.  The primary motivation for our approach is the observation that prediction using censored data can be viewed as a collection of classification problems.  Class 1 consists of those patients known to have recurred in the first year following surgery, Class 2 corresponds to those recurring in the second year, and so on.  By combining these problems into a single model, we can expect to get the most predictive power from the available data.

Our neural network contains one output node for each of the above classes, up to ten years (the length of the study).  The training signal for the individual cases is a scaled probability of recurrence for each time step, as shown graphically in Figure 9.  For recurrent cases, the network was trained with values of +1 for all outputs up to the observed recurrence time, and –1 thereafter.  For instance, a recurrence at 32 months would have a training vector T = {1, 1, (1, (1, (1, (1, (1, (1, (1, (1}.  The value of the probability formulation is seen in the censored cases.  They were similarly trained with values of +1 up to the observed disease-free survival time.  The probabilities of disease-free survival (DFS) for later times were computed using a variation of the standard Kaplan-Meier maximum likelihood approximation to the true 


Figure 9.  Training signal for neural network model: (a) recurrent case, (b) censored case.

population survival rate [20].  Thus the network can be viewed as learning a projected survival curve, a plot of time vs. probability of disease-free survival, for any combination of input values.

This architecture facilitates three different uses of the resulting predictive model:

1. The output units can be divided into groups to separate good from poor prognoses.  For a particular application, any prediction of recurrence at a time greater than five years might be considered favorable, and indicate less aggressive treatment. 

2. An individualized disease-free survival curve can be easily generated for a particular patient by plotting the probabilities predicted by the various output units.

3. The expected time of recurrence can be obtained merely by noting the first output unit that predicts a probability of disease-free survival of less than 0.5.  This provides a convenient method of rank-ordering the cases according to the expected outcome.

Cross-validated predictive results are shown in Figures 10-12.  Figure 10 shows the Kaplan-Meier disease-free survival estimates for the “poor” prognostic group (those patients predicted to recur at some point during the first five years) vs. the “good” group (all others).  The difference in the two groups is statistically significant (p < 0.001).  A very low risk subset can be obtained by choosing only those cases with the lowest probability of recurrence in year 10.  For example, of the most favorable 19 cases, only 3 have a known recurrence.  More importantly, this predictive performance was again gained without use of the lymph node status feature, and the addition of this feature to the model (by adding the number of positive lymph nodes as an input feature and retraining) did not improve the results.  Moreover, we again stress that these results were obtained using cross-validation, so that each case was tested against models that was trained without using the case in question.

Even more dramatic results were obtained using the SEER data set, obtained from the National Cancer Institute [12].  In this larger study of 34,545 cases, the good prognostic group had an estimated 10-year survival of 82%, while the poor prognostic group had an estimated 10-year survival of 37%.


Figure 10.  Actual outcomes of those cases predicted to recur in the first five years (Poor, 58 cases) compared to those predicted to recur at some time greater than five years (Good, 169 cases).

Figure 11 plots the actual Kaplan-Meier curve for our cases along with the predicted recurrence times.  There is no statistical difference between these curves (p = 0.2818).  From the results in Figures 10 and 11, we conclude that the network is learning a reasonable model of recurrence based on the nuclear morphometric features.  Note that direct computation of predicted-vs.-true outcome is problematic when using censored data, since, as previously noted, we often to not know the “answer.” 


Figure 11.  Kaplan-Meier estimate of true disease-free survival curve compared to predicted DFS curve.

Figure 12 shows how the predictive method is used in practice.  The expected survival curve of a single patient is generated by plotting the probabilities computed by the neural network.  This is compared to the overall survival curve for our study, giving an easily-interpretable visual representation of the individual prognosis.  The expected time of recurrence can be computed by noting where the DFS curve crosses a probability of 50%, in this case, between three and four years.  In fact, this patient did experience disease recurrence in the 44th month following surgery.


Figure 12.  Predicted DFS curve of a single case compared to the overall group DFS curve.

5 Remote Execution

One of the ways that the Internet is revolutionizing the way medicine is practiced is by making specialized decision-making tools available regardless of location.  With only a personal computer and a modem, an urban medical center in Los Angeles or a small-town hospital in rural Iowa can now access expertise previously available only at specialized centers.  Our contribution to this revolution is the implementation of Xcyt as a Java applet, suitable for execution via the World Wide Web.  A trial version of the software is available at http://dollar.biz.uiowa.edu/xcyt.

Using the software available at this site, the same levels of diagnostic and prognostic accuracy we achieve can be obtained at any medical facility with the ability to prepare the FNA sample and scan a digital image.  

We foresee several important benefits to patients resulting from the increased use of the Xcyt system.  The diagnostic system has proven reliable for even otherwise-indeterminate cases, resulting in a reduction in unnecessary surgeries.  Plus, the diagnosis can be performed in a few minutes on an outpatient basis, rather than over the course of several days, as might be the case if a tissue sample was needed at a remote lab.  The prognostic system offers more detailed information for the doctor and the patient in choosing a post-operative treatment regimen, and does so without the morbidity attached to the removal of axillary lymph nodes.  Finally, the entire process can be performed at very low cost, a primary concern for both health care providers and patients.

The Xcyt implementation allows users to test the software in images stored on our server, or to analyze their own images.  This is achieved via file transfer accomplished with a Common Gateway Interface (CGI) [24].  Once the analysis is performed, the resulting feature values and outcomes can be saved on both the client side and the server side.  In this way, we can continue to gather more samples with which to improve our predictive models.  In time, this may lead to a substantial expansion of the types of information we make available to the learning methods; for instance, different sample preparation methods, patient populations, predictive features, etc. can be accommodated in future releases.

Researchers interested in collaborating in this effort are invited to contact the author.  We wish to stress that the Xcyt system should be viewed as merely an objective expert advisor; a qualified physician should make all medical decisions.  Further, while the analysis of nuclear features is a widely-applicable approach to disease diagnosis and prognosis, the predictive models should only be trusted when applied to breast FNA samples prepared in exactly the same way as the samples used in our training cases.  See [42] for details on sample preparation.

6 Conclusions

The Xcyt software system provides remote predictive analysis for breast cancer diagnosis and prognosis.  Its digital image analysis capabilities allow precise quantification of nuclear characteristics.  The diagnostic system achieves the highest accuracy available with any method short of surgical biopsy.  The prognostic system gives accurate, individualized predictions of breast cancer recurrence without knowledge of lymph node metastasis.  The analysis process is fast, reliable, and inexpensive.  The method described here is applicable to many different diseases and prediction problems.  We believe that this type of system will become increasingly popular, improving the routine clinical practice of physicians all over the world by making expert diagnosis and prognosis immediately available.
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(b) Edge image





(a) Original image.  Nucleus 1 is approximately 11(14 pixels; nucleus 2, 12(15; nucleus 3, 12(17.





(d) Accumulator with 12(15 elliptical template





(e) Accumulator with 12(17 elliptical template





(c) Accumulator with 11(14 elliptical template
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� Many other predictors have been proposed for breast cancer prognosis; see Section 4 for a brief summary.
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