
Clustering via Concave MinimizationP. S. Bradley and O. L. Mangasarian W. N. StreetComputer Sciences Department Computer Science DepartmentUniversity of Wisconsin Oklahoma State University1210 West Dayton Street 205 Mathematical SciencesMadison, WI 53706 Stillwater, OK 74078email: paulb@cs.wisc.edu, olvi@cs.wisc.edu email:nstreet@cs.okstate.eduAbstractThe problem of assigning m points in the n-dimensional real spaceRn to k clusters is formulated as that of determining k centers inRn such that the sum of distances of each point to the nearestcenter is minimized. If a polyhedral distance is used, the problemcan be formulated as that of minimizing a piecewise-linear concavefunction on a polyhedral set which is shown to be equivalent toa bilinear program: minimizing a bilinear function on a polyhe-dral set. A fast �nite k-Median Algorithm consisting of solvingfew linear programs in closed form leads to a stationary point ofthe bilinear program. Computational testing on a number of real-world databases was carried out. On the Wisconsin DiagnosticBreast Cancer (WDBC) database, k-Median training set correct-ness was comparable to that of the k-Mean Algorithm, however itstesting set correctness was better. Additionally, on the WisconsinPrognostic Breast Cancer (WPBC) database, distinct and clini-cally important survival curves were extracted by the k-MedianAlgorithm, whereas the k-Mean Algorithm failed to obtain suchdistinct survival curves for the same database.1 IntroductionThe unsupervised assignment of elements of a given set to groups or clusters oflike points, is the objective of cluster analysis. There are many approaches to thisproblem, including statistical [9], machine learning [7], integer and mathematicalprogramming [18, 1]. In this paper we concentrate on a simple concave minimizationformulation of the problem that leads to a �nite and fast algorithm. Our point of



departure is the following explicit description of the problem: given m points in then-dimensional real spaceRn, and a �xed number k of clusters, determine k centers inRn such that the sum of \distances" of each point to the nearest center is minimized.If the 1-norm is used, the problem can be formulated as the minimization of apiecewise-linear concave function on a polyhedral set. This is a hard problem tosolve because a local minimum is not necessarily a global minimum. However, byconverting this problem to a bilinear program, a fast successive-linearization k-Median Algorithm terminates after a few linear programs (each explicitly solvablein closed form) at a point satisfying the minimum principle necessary optimalitycondition for the problem. Although there is no guarantee that such a point is aglobal solution to our original problem, numerical tests on �ve real-world databasesindicate that the k-Median Algorithm is comparable to or better than the k-MeanAlgorithm [18, 9, 8]. This may be due to the fact that outliers have less in
uenceon the k-Median Algorithm which utilizes the 1-norm distance. In contrast the k-Mean Algorithm uses squares of 2-norm distances to generate cluster centers whichmay be inaccurate if outliers are present. We also note that clustering algorithmsbased on statistical assumptions that minimize some function of scatter matricesdo not appear to have convergence proofs [8, pp. 508-515], however convergence toa partial optimal solution is given in [18] for k-Mean type algorithms.We outline now the contents of the paper. In Section 2, we formulate the clusteringproblem for a �xed number of clusters, as that of minimizing the sum of the 1-normdistances of each point to the nearest cluster center. This piecewise-linear concavefunction minimization on a polyhedral set turns out to be equivalent to a bilinearprogram [3]. We use an e�ective linearization of the bilinear program proposed in[3, Algorithm 2.1] to solve our problem by solving a few linear programs. Becauseof the simple structure, these linear programs can be explicitly solved in closedform, thus leading to the �nite k-Median Algorithm 2.3 below. In Section 3 we givecomputational results on �ve real-world databases. Section 4 concludes the paper.A word about our notation now. All vectors are column vectors unless otherwisespeci�ed. For a vector x 2 Rn; xi; i = 1; : : : ; n, will denote its components. Thenorm k � kp will denote the p norm, 1 � p � 1, while A 2 Rm�n will signify a realm�n matrix. For such a matrix, AT will denote the transpose, and Ai will denoterow i. A vector of ones in a real space of arbitrary dimension will be denoted by e.2 Clustering as Bilinear ProgrammingGiven a set A ofm points in Rn represented by the matrix A 2 Rm�n and a numberk of desired clusters, we formulate the clustering problem as follows. Find clustercenters C`; ` = 1; : : : ; k, in Rn such that the sum of the minima over ` 2 f1; : : : ; kgof the 1-norm distance between each point Ai; i = 1; : : : ;m, and the cluster centersC`; ` = 1; : : : ; k, is minimized. More speci�cally we need to solve the followingmathematical program:minimizeC;D mXi=1 min`=1;:::;k feTDi`gsubject to �Di` � ATi � C` � Di`; i = 1; : : : ;m; ` = 1; : : : k (1)Here Di` 2 Rn, is a dummy variable that bounds the components of the di�erence



ATi � C` between point ATi and center C`, and e is a vector of ones in Rn. HenceeTDi` bounds the 1-norm distance between Ai and C`. We note immediately thatsince the objective function of (1) is the sum of minima of k linear (and henceconcave) functions, it is a piecewise-linear concave function [13, Corollary 4.1.14].If the 2-norm or p-norm, p 6= 1;1, is used, the objective function will be neitherconcave nor convex. Nevertheless, minimizing a piecewise-linear concave functionon a polyhedral set is NP-hard, because the general linear complementarity prob-lem, which is NP-complete [4], can be reduced to such a problem [11, Lemma 1].Given this fact we try to look for e�ective methods for processing this problem. Wepropose reformulation of problem (1) as a bilinear program. Such reformulationshave been very e�ective in computationally solving NP-complete linear complemen-tarity problems [14] as well as other di�cult machine learning [12] and optimizationproblems with equilibrium constraints [12]. In order to carry out this reformulationwe need the following simple lemma.Lemma 2.1 Let a 2 Rk. Thenmin1�`�k fa`g = mint2Rk( kX̀=1 a`t` ��������������� kX̀=1t` = 1; t` � 0; ` = 1; : : : ; k) (2)Proof This essentially obvious result follows immediately upon writing the dual ofthe linear program appearing on the right-hand side of (2) which ismaxh2R fh���������h � a`; ` = 1; : : : kg (3)Obviously, the maximum of this dual problem is h = min1�`�k fa`g. By linearprogramming duality theory, this maximum equals the minimum of the primallinear program in the right hand side of (2). This establishes the equality of (2).By de�ning aì = eTDi`; i = 1; : : : ;m; ` = 1; : : : ; k, Lemma 2.1 can be used toreformulate the clustering problem (1) as a bilinear program as follows.Proposition 2.2 Clustering as a Bilinear Program The clustering problem(1) is equivalent to the following bilinear program:minimizeC`2Rn;Di`2Rn;Ti`2R Pmi=1Pk̀=1 eTDi`Ti`subject to �Di` � ATi � C` � Di`; i = 1 : : : ;m; ` = 1; : : : ; kPk̀=1 Ti` = 1 Ti` � 0; i = 1; : : : ;m; ` = 1; : : : ; k (4)Note that the constraints of (4) are uncoupled in the variables (C;D) and the vari-able T . Hence the Uncoupled Bilinear Program Algorithm UBPA [3, Algorithm2.1] is applicable. Simply stated, this algorithm alternates between solving a linearprogram in the variable T and a linear program in the variables (C;D). The al-gorithm terminates in a �nite number of iterations at a stationary point satisfyingthe minimum principle necessary optimality condition for problem (4) [3, Theorem2.1]. We note however, because of the simple structure the bilinear program (4),the two linear programs can be solved explicitly in closed form. This leads to thefollowing algorithmic implementation.Algorithm 2.3 k-Median Algorithm Given Cj1 ; : : : ; Cjk at iteration j, computeCj+11 ; : : : ; Cj+1k by the following two steps:



(a) Cluster Assignment: For each ATi ; i = 1; : : :m, determine `(i) such thatC j̀(i) is closest to ATi in the 1-norm.(b) Cluster Center Update: For ` = 1; : : : ; k choose Cj+1` as a median ofall ATi assigned to C j̀ .Stop when Cj+1` = C j̀ , ` = 1; : : : ; k.Although the k-Median Algorithm is similar to the k-Mean Algorithm wherein the2-norm distance is used [18, 8, 9], it di�ers from it computationally, and theoreti-cally. In fact, the underlying problem (1) of the k-Median Algorithm is a concaveminimization on a polyhedral set while the corresponding problem for the p-norm,p 6= 1, is: minimizeC;D mXi=1 min`=1;:::;kkDi`kpsubject to �Di` � ATi � C` � Di`; i = 1 : : : ;m; ` = 1; : : : ; k: (5)This is not a concave minimization on a polyhedral set, because the minimum ofa set of convex functions is not in general concave. The concave minimizationproblem of [18] is not in the original space of the problem variables, that is, thecluster center variables, (C;D), but merely in the space of variables T that assignpoints to clusters. We also note that the k-Mean Algorithm �nds a stationary pointnot of problem (5) with p = 2, but of the same problem except that kDi`k2 isreplaced by kDi`k22. Without this squared distance term, the subproblem of thek-Mean Algorithm becomes the considerably harder Weber problem [17, 5] whichlocates a center in Rn closest in sum of Euclidean distances (not their squares!) to a�nite set of given points. The Weber problem has no closed form solution. However,using the mean as a cluster center of points assigned to the cluster, minimizes thesum of the squares of the distances from the cluster center to the points. It isprecisely the mean that is used in the k-Mean Algorithm subproblem.Because there is no guaranteed way to ensure global optimality of the solutionobtained by either the k-Median or k-Mean Algorithms, di�erent starting pointscan be used to initiate the algorithm. Random starting cluster centers or someother heuristic can be used such as placing k initial centers along the coordinateaxes at densest, second densest, : : :, k densest intervals on the axes.3 Computational ResultsAn important computational issue is how to measure the correctness of the resultsobtained by the proposed algorithm. We decided on the following three ways.Remark 3.1 Training Set Correctness The k-Median algorithm (k = 2) isapplied to a database with two known classes to obtain centers. Training correctnessis measured by the ratio of the sum of the number examples of the majority class ineach cluster to the total number of points in the database. The k-Median trainingset correctness is compared to that of the k-Mean Algorithm as well as the trainingcorrectness of a supervised learning method, a perceptron trained by robust linearprogramming [2]. Table 1 shows results averaged over ten random starts for the



publicly available Wisconsin Diagnostic Breast Cancer (WDBC) database as well asthree others [15, 16]. We note that for two of the databases k-Median outperformedk-Mean, and for the other two k-Mean was better.Algorithm # Database ! WDBC Cleveland Votes Star/Galaxy-BrightUnsupervised k-Median 93.2% 80.6% 84.6% 87.6%Unsupervised k-Mean 91.1% 83.1% 85.5% 85.6%Supervised Robust LP 100% 86.5% 95.6% 99.7%Table 1 Training set correctness using the unsupervised k-Medianand k-Mean Algorithms and the supervised Robust LP on four databasesRemark 3.2 Testing Set CorrectnessThe idea behind this approach
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Figure 1: Correctness on variable-size test set ofunsupervised k-Median & k-Mean Algorithms ver-sus correctness of the supervised Robust LP onWDBC

is that supervised learningmay be costly due to prob-lem size, di�culty in obtainingtrue classi�cation, etc., hencethe importance of good per-formance of an unsupervisedlearning algorithm on a test-ing subset of a database. TheWDBC database [15] is splitinto training and testing sub-sets of di�erent proportions.The k-Median and k-Mean Al-gorithms (k = 2) are applied tothe training subset. The cen-ters are given class labels de-termined by the majority classof training subset points as-signed to the cluster. Class la-bels are assigned to the testingsubset by the label of the clos-est center. Testing correctness is determined by the number of points in testingsubset correctly classi�ed by this assignment. This is compared to the correctnessof a supervised learning method, a perceptron trained via robust linear programming[2], using the leave-one-out strategy applied to the testing subset only. This com-parison is then carried out for various sizes of the testing subset. Figure 1 showsthe results averaged over 50 runs for each of 7 testing subset sizes. As expected,the performance of the supervised learning algorithm (Robust LP) improved as thesize of the testing subset increases. The k-Median Algorithm test set correctness re-mained fairly constant in the range of 92.3% to 93.5%, while the k-Mean Algorithmtest set correctness was lower and more varied in the range 88.0% to 91.3%.Remark 3.3 Separability of Survival Curves In mining medical databases,survival curves [10] are important prognostic tools. We applied the k-Median andk-Mean (k = 3) Algorithms, as knowledge discovery in database (KDD) tools [6],to the Wisconsin Prognostic Breast Cancer Database (WPBC) [15] using only twofeatures: tumor size and lymph node status. Survival curves were constructed for
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(b) k-MeanFigure 2: Survival curves for the 3 clusters obtained by k-Median and k-MeanAlgorithmseach cluster, representing expected percent of surviving patients as a function oftime, for patients in that cluster. Figure 2(a) depicts the survival curves fromclusters obtained from the k-Median Algorithm, Figure 2(b) depicts curves for thek-Mean Algorithm. The key observation to make here is that curves in Figure 2(a)are well separated, and hence the clusters can be used as prognostic indicators. Incontrast, the curves in Figure 2(b) are poorly separated, and hence are not usefulfor prognosis.4 ConclusionWe have proposed a new approach for assigning points to clusters based on a simpleconcave minimization model. Although a global solution to the problem cannot beguaranteed, a �nite and simple k-Median Algorithm quickly locates a very usefulstationary point. Utility of the proposed algorithm lies in its ability to handle largedatabases and hence would be a useful tool for data mining. Comparing it withthe k-Mean Algorithm, we have exhibited instances where the k-Median Algorithmis superior, and hence preferable. Further research is needed to pinpoint types ofproblems for which the k-Median Algorithm is best.5 AcknowledgementsOur colleague Jude Shavlik suggested the testing set strategy used in Remark 3.2.This research is supported by National Science Foundation Grants CCR-9322479and National Institutes of Health INRSA Fellowship 1 F32 CA 68690{01.References[1] K. Al-Sultan. A Tabu search approach to the clustering problem. PatternRecognition, 28(9):1443{1451, 1995.
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