
Proceedings of the 6th INFORMS Workshop on Data Mining and Health Informatics (DM-HI 2011)
P. Qian, Y. Zhou, C. Rudin, eds.

A latent feature factor graph for cancer diagnosis using microarray gene
expression data

Mohammad Khoshneshin
Department of Management Sciences

University of Iowa
Iowa City, IA

mohammad-khoshneshin@uiowa.edu

W. Nick Street
Department of Management Sciences

University of Iowa
Iowa City, IA

Abstract
In this paper, we propose a latent feature model — Latent feature factor graph (LFFG) — for the gene expression
microarray classification problem. LFFG is a factor graph in which each entity is represented via a latent feature
variable — a node in the factor graph. Then the relationship between entities is captured via a function of latent

features — a factor in the factor graph. We use maximum a posteriori estimation to learn the latent features for the
gene expression microarray classification problem. The experiments over a small dataset are promising as LFFG

outperforms SVM — the state-of-the-art classification method in microarray classification.

Keywords: microarray classification, factor graph, latent variables

Introduction

Because of the availability of huge gene expression microarray datasets, many machine learning and pattern recogni-
tion algorithms have emerged to analyze them [12]. One of the important applications of gene expression microarray
data is in cancer diagnosis [11]. In this paper, we propose a new classification approach — the latent feature factor
graph — which works well in microarray classification.

The latent feature factor graph is a graphical model. Graphical models [9] are used to represent complex prob-
ability distributions via a graph. Nodes denote random variables and edges denote dependencies between random
variables. There are three different types of graphical models. Bayesian networks are directed acyclic graphs. Markov
networks are undirected graphs. Factor graphs [8] are bipartite graphs with two different types of nodes. The first type
of nodes are random variables and the second type of nodes represent factors which are a function of random variables.
In this paper, we use factor graphs due to their expressive power [4].

Figure 1-(a) represents a typical factor graph with 3 random variables (x1, x2 and x3) and two factors (f1 and f2).
Given a factor graph, the probability distribution over random variables factors based on a potential function φi for
each factor fi:

P (x1, x2, ..., xn) =
1

Z

∏
i

φi(Si), (1)

where Si denotes the set of random variables connected to factor i and Z =
∑

x

∏
i φi(Si) is the partition function.

The only condition is φi ≥ 0 for all factors. Given 1, the joint probability distribution for the factor graph in Figure
1-(a) is:

P (x1, x2, x3) =
1

Z
φ1(x1, x2)φ2(x2, x3).

1

x1

x2

x2

f1

f2

xg xs

vsg

ys′c

xs′

xc

ysc

f2

f1

f3

W

NG

NS

NC

s′ 6= s

θG

θS

θC
θW

(a) A factor graph (b) The latent feature factor graph

µW

bg

Figure 1: The graphical model of (a) a typical factor graph and (b) the latent feature factor graph.
In (b), observed variables are shown in gray while latent variables are white. Note that ysc and ys′c
are observed only in the training set.

In this paper, we propose a factor graph model — latent feature factor graphs — to learn the relationship between
entities. In LFFG, we try to discover the latent features of entities in a low-dimensional space via random variable
or nodes in the factor graph. That is, per each entity, a random variable is defined which is latent variable. The
relationship between entities is captured via a function of the latent features — representative random variables —
which is a factor in the factor graph. The LFFG graphical model for the gene expression microarray classification
problem, is shown in Figure 1-(b) where there are 3 types of entities: genes, samples and cancer categories. xs, xg and
xc are the random variables representing latent features of samples, genes and categories. Two types of relationships
are of interest: expression level (shown by vsg) and samples’ cancer category (shown by ysc). The expression level
of a gene for a sample will be a function of the latent features of the gene and the sample (factor f1). Similarly,
the cancer category relationship is a function of the latent features of the sample and cancer categories (factor f2).
To boost classification power, we force similarity between the latent features of two samples with the same cancer
category (factor f3).

We use maximum a posteriori probability (MAP) estimation to learn the latent features for the gene expression
microarray classification problem. The experiments over a small dataset are promising as LFFG outperforms support
vector machine (SVM) — the state-of-the-art classification method in microarray classification [11]. We conjecture
that LFFG is successful because it behaves as a supervised dimensionality reduction method. It embeds entities
in a low-dimensional dot product space where the samples from the same class are more similar to each other. In
comparison to SVM that uses kernel trick to transfer original space to a dot product space, LFFG constructs the dot
product space from scratch using both features and labels.

The proposed latent feature factor graph is similar to collective matrix factorization [10] in some aspects as we
use weighted linear functions for factors. However, collective matrix factorization is capable of predicting values from
several matrices while the goal of our model is classification. Collective matrix factorization assumes a generative
model from latent features to relationships — a directed graph — which is limiting, while LFFG assumes correlation
between latent feature variables — which can be directed or undirected given the definition of potentials. Therefore,

2

applying collective matrix factorization to gene expression microarray classification is not straightforward. However,
non-negative matrix factorization has been used for clustering microarray data [2] where the learning is only based on
the microarray data — an unsupervised approach. While this approach is worthwhile since it does not need labels for
training, it is not as powerful as supervised learning approaches.

Latent feature factor graph

In the latent feature factor graph, we introduce one random variable per entity. In classification using microarray gene
expression data, there are 3 groups of entities: xs — a (1 × d) vector — denotes the latent feature for sample s, xg
— a (1 × d) vector — denotes the latent feature for gene g, bg — a scalar — denotes the bias in expression for gene
g, and xc — a (1 × d) vector — denotes the latent feature for category c. Generally, latent features are vectors with
the same size. However, it is possible to assume different sizes for the entities of different types. As a result, the
relationship between entities can be captured as a function of entities’ latent feature variables — a factor. Here, two
types of relationships exist. The expression level of each gene g for each sample s, denoted by vsg , and the category c
of each sample s, denoted by ysc which is a binary variable and is one if sample s is in category c and zero otherwise.
For the expression level relationship, we define the factor as

φ1(xg, xs, vsg) = exp

(
−τ (xgx

T
s + bg − vsg)2

2

)
. (2)

Such a factor implies that the distribution over vsg is Gaussian with mean xgxTs + bg and precision (one over variance)
τ . For the category relationship, we define the factor

φ2(xs, xc, ysc) = exp(xsWxTc ysc), (3)

whereW — a (d×d) matrix — is a weight matrix to transfer xs from the microarray gene expression data space to the
classification space. Note that (3) resembles the numerator of the multinomial logistic regression probability. However,
they are not equivalent due to our third factor definition. In the third factor, the relationship between categories and
latent features of two different samples is captured with the factor

φ3(xs, xs′ , ysc, ys′c) = exp

(
xsWWTxTs′yscys′c∑

s′′ ys′′c

)
, (4)

where
∑

s′′ ys′′c is a normalizing term for unbalanced categories.

The factor graph representing the explained model is shown in Figure 1-(b) via plate notation. In plate notation,
the enumeration over random variables is denoted by plates. In classification based on gene expression data, there are
NG genes, NS samples, and NC categories. For the relationship between two distinct samples, the plate with index
s′ 6= s is used. The priors over latent features are shown by directed relationships. The Gaussian prior with mean
zero is assumed for all latent variables (relaxing the zero-mean assumption is straightforward). Each θ in the graphical
model is the precision for the relevant variable where we assumed Multivariate Gaussian with independent elements.
The prior mean of matrix W is the matrix µW .

The probability distribution over all random variables is

P (X,W, Y, V |Θ) =

1

Z
exp(−ατ

∑
gs

(xgx
T
s + bg − vsg)2

2
+ (1− α)

∑
sc

xsWxTc ysc +
∑

s<s′,c

xsWWTxTs′yscys′c∑
s′′ ys′′c


− θG

2

∑
g

(||xg||22 + b2g)− θS
2

∑
s

||xs||22 −
θC
2

∑
c

||xc||22 −
θW
2
||W − µW ||22), (5)

where Z is the partition function and 0 < α < 1 is the weight for combining expression level factor and classification
factor. Such a weighting is necessary since the data is usually unbalanced — very fat in the gene expression side.

For learning the latent features, we only use the samples for which the category is given — the training set.
However, it is possible to use the unlabeled data given the latent feature factor graph in a semi-supervised learning

3

manner — similar to the work of Zhu and Ghahramani [13] — which we leave for future directions. Therefore, in
the learning phase, the latent feature parameters are learned given the observed variables vsg and ysc. Here we use
maximum a posteriori probability (MAP) estimation which is the mode of the posterior distribution over the latent
feature variables.

As another strategy, instead of finding the right weight parameter α, we optimize the probability distribution by
alternating between the factors for the expression level and the category. That is, in an iterative way, first we optimize
the log-posterior function over variables xg , bg , and xs based on the factor f1, and then over variables xs, xc, and W
based on the factors f2 and f3. This is because of the fact that based on the joint probability distribution (5), the only
common random variable between f1, f2, and f3 is xs. For making xs satisfying both groups, we update the prior of
xs between alternating. As we mentioned, the prior over xs is Gaussian with mean zero and precision θS . Given x̂s as
the output of one half of the algorithm, the prior over xs will be a Gaussian with mean x̂s/2 and precision θS which
is the posterior of the xs given the first prior and the new recieved x̂s. That way, the prior mean over xs for updating
based on factor 1 is half of the xs as the output of updating based on factors 2 and 3 and vice versa. We show the
updated prior over xs by µs.

For optimizing the log-posterior function based on the first factor, first we update xg and bg to fit them to the xs
coming from factors 2 and 3 phase. The equation for updating xg is

xg = (−
∑
s

(bg − vsg)xs)(
∑
s

xTs xs + θGI)−1 (6)

for all g, where I is the identity matrix. The equation for updating bg is

bg =
−∑s(xsx

T
g − vsg)

NS + θG
(7)

for all g. The equation for updating xs is

xs = (θSµs −
∑
g

(bg − vsg)xg)(
∑
g

xTg xg + θSI)−1. (8)

Optimizing the log-posterior function based on the second and third factors is more complex due to the difficulty of
computing the partition function. This is because of the exponential growth for summing over all possible ysc variables
in computing the partition function. To remedy this problem, instead of optimizing the log-posterior function given all
variables, we work on the conditional probability of one sample given the labels for the rest of samples:

P (ysc, X,W |ys′ 6=s,c) = (const)
exp

(∑
c xsWxTc ysc +

∑
s′ 6=s,c

xsWWT xT
s′yscys′c∑

s′ ys′c

)
∑

ysc
exp

(∑
c xsWxTc ysc +

∑
s′ 6=s,c

xsWWT xT
s′yscys′c∑

s′ ys′c

)
exp

(
−θS

2

∑
s

||xs − µs||22 −
θC
2

∑
c

||xc||22 −
θW
2
||W − µW ||22

)
, (9)

where const does not depend on any decision variable and sum over ysc means enumerating over all categories for
sample s. In this phase, we update the variables with regard to one sample via gradient ascent. The order of going over
different samples is randomized. Note that the xs′ |∀s′ 6= s variables are updated given (9) for sample s. The inside
loop for updating xs′ is randomized as well.

The algorithm for learning latent features is presented in Figure 2. Note that we repeat phase 2 until convergence
since in phase 1 we use closed-form updates while in phase 2 we use gradient ascent and changes are slower. Finally,
given latent feature variables, we can classify test sample t. First, using

xt = (−
∑
g

(bg − vtg)xg)(
∑
g

xTg xg + θGI)−1, (10)

we map the sample t in the new space. Then using

P (ytc|Ytrain, X,W) =
exp

(∑
c xtWxTc ytc +

∑
sc

xtWWT xT
s ytcysc∑

s ysc

)
∑

ytc
exp

(∑
c xtWxTc ytc +

∑
sc

xtWWT xT
s ytcysc∑

s ysc

) , (11)

4

Input [{ysc}sc, {vsg}sg, θC, θS, θG, θW , µW]
Output [{xs}s,{xg}g,{bg}g,{xc}c,W]
Initialize [{xs}s,{xg}g,{bg}g,{xc}c,W]
∀s µs ← xs/2
Repeat

Phase 1
Update {xg}g using (6)
Update {bg}g using (7)
Update {xs}s using (8)

∀s µs ← xs/2
Phase 2

Repeat
For s ∈ RandomizedOrder

optimize (9) over {xs}s,{xc}c,W by gradient ascent
End

Until(convergence)
∀s µs ← xs/2

Until (convergence)

Figure 2: Iterative algorithm for learning latent features.

we can predict the class of the sample t.

Experimental results

For experimental evaluation, we used the 9-tumors dataset explained in [11]. In this dataset, there are 60 samples,
5726 genes, and 9 categories. We compared LFFG to SVM as a best known classifier for this problem [11]. LIBSVM
[3] was used for evaluating SVM.

For SVM, we optimized over RBF and polynomial kernels via cross-validation. The best result was a linear kernel
with C = 200. As preprocessing, we tried different normalizing procedures and for SVM, casting data to [0,1] interval
worked best.

For LFFG, we optimized over θG = θS = θs = θ (equal θ for all entities for simplicity of optimization) and
θ = 30 gave the best result. The step size for gradient ascent part was set to 1.0e− 5. Latent features were initialized
by standard normal distribution. As preprocessing, we tried different normalizing procedures and normalizing by
dividing data by the standard deviation of each gene worked best.

Due to the small size of the data, we repeated 10-fold cross-validation experiments 10 times — a total of 100
experiments. In each run, data was split into 10 mutual exclusive groups randomly. We did not implement stratified
splitting since it impaired randomness given the small size of the dataset.

The results are given in Table 1. We use accuracy — the percentage of correctly labeled samples — for comparing
LFFG and SVM. LFFG outperforms SVM in all runs and for eight runs the differences significant at 0.05. In total,
LFFG outperforms SVM with p-value equal to 1.4e-10.

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10 total
SVM 48.33 53.33 53.33 51.67 55.00 55.00 51.67 53.33 51.67 58.33 53.17
LFFG 65.00 63.33 71.67 63.33 71.67 68.33 70.00 63.33 66.67 68.33 67.17
p-value 0.002 0.109 0.006 0.044 0.032 0.026 0.009 0.012 0.041 0.130 1.4e-10

Table 1: The accuracy results of ten runs of 10-fold cross-validation experiments (total of 100
runs). The bold numbers are significant at 0.05 in paired t-test.

5

Conclusion

In this paper, we propose a novel classification approach for gene expression microarray classification — latent feature
factor graph. LFFG assumes a latent feature variable for each entity — a random variable in a factor graph — and
captures the relationship between entities with a function of the latent feature variables — a factor in a factor graph. We
used MAP estimation for learning the latent features. Experimental results show that LFFG outperforms the popular
classification algorithm SVM.

One important future direction is implementing Bayesian inference over latent feature variables instead of MAP.
However, computing the posterior is intractable. We plan to examine two main approximate inference approaches for
graphical models for LFFG: variational approximations [5] and Markov chain Monte Carlos [1].

In this paper, we only used linear functions. However, it is possible to use the Euclidean distance function which is
useful for visualizing samples. Such an approach has been used in collaborative filtering [6] and information retrieval
[7].

References

[1] C. Andrieu, N. De Freitas, A. Doucet, and M.I. Jordan. An introduction to mcmc for machine learning. Machine
learning, 50(1):5–43, 2003.

[2] J.P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes and molecular pattern discovery using matrix
factorization. Proceedings of the National Academy of Sciences of the United States of America, 101(12):4164,
2004.

[3] C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST), 2(3):2–27, 2011.

[4] B.J. Frey. Extending factor graphs so as to unify directed and undirected graphical models. In Proc. 19th Conf.
Uncertainty in Artificial Intelligence, pages 257–264, 2003.

[5] M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to variational methods for graphical
models. Machine Learning, 37(2):183–233, 1999.

[6] Mohammad Khoshneshin and W. Nick Street. Collaborative filtering via Euclidean embedding. In Proceedings
of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages 87–94, New York, NY, USA, 2010.
ACM.

[7] Mohammad Khoshneshin, W. Nick Street, and Padmini Srinivasan. Bayesian embedding of co-occurrence data
for query-based visualization. In Proceedings of IEEE International Conference on Machine Learning and
Applications, 2011.

[8] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[9] S.L. Lauritzen. Graphical models, volume 17. Oxford University Press, USA, 1996.

[10] Ajit P. Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In Proceeding of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, pages
650–658, New York, NY, USA, 2008. ACM.

[11] A. Statnikov, C.F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory
classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631, 2005.

[12] F. Valafar. Pattern recognition techniques in microarray data analysis. Annals of the New York Academy of
Sciences, 980(1):41–64, 2002.

[13] X. Zhu and Z. Ghahramani. Towards semi-supervised classification with markov random fields. Technical report,
Technical Report CMU-CALD-02-106, Carnegie Mellon University, 2002.

6

