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ABSTRACT

Community detection is an important task for social net-
works, which helps us understand the functional modules
on the whole network. Among different community detec-
tion methods based on graph structures, modularity-based
methods are very popular recently, but suffer a well-known
resolution limit problem. This paper connects modularity-
based methods with correlation analysis by subtly reformat-
ting their math formulas and investigates how to fully make
use of correlation analysis to change the objective function of
modularity-based methods, which provides a more natural
and effective way to solve the resolution limit problem. In
addition, a novel theoretical analysis on the upper bound of
different objective functions helps us understand their bias
to different community sizes, and experiments are conducted
on both real life and simulated data to validate our findings.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications — Data Mining

Keywords

community detection; correlation analysis; modularity; lever-
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1. INTRODUCTION

The modern science of graphs has significantly helped
us understand complex systems. One important feature
of graphs is community structure where nodes in the same
community have a higher chance to be connected to each
other than that of nodes in different communities. Such
communities can be considered as relatively independent
components and play a role in the system. Community de-
tection, which attempts to identify the modules by using
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the graph topology, has a long history in sociology, biol-
ogy, and computer science where systems are often repre-
sented as graphs. The first research on community detection
was made by Weiss and Jacobson [39] to study the work-
ing relationships between members of a government agency.
Nowadays, there are many different community detection
methods, such as spectral-based methods [24], density-based
methods [26], modularity-based methods [9, 35|, divisive
methods [19], statistical-inference-based methods [28], etc.
Generally speaking, their progress can be categorized into
the following three procedures: (1) feature selection (2) ob-
jective function (3) search procedure.

Feature selection selects relevant features, and removes
irrelevant noisy information. Spectral-based methods [24]
use the eigenvectors of the adjacency matrix for community
detection. The Laplacian is by far the most used matrix
in spectral-based methods. Though no unique matrix is ex-
actly called the graph Laplacian [24], one commonly used
Laplacian is calculated as follows. Given the adjacency ma-
trix W of the graph G, we calculate the matrix D where the
diagonal element d; is equal to ", (wi;) and non-diagonal
elements are 0. The Laplacian matrix L is equal to D — W.
We choose k eigenvectors corresponding to the k& smallest
eigenvalues to transform the original adjacency matrix, and
then apply the traditional clustering methods like K-mean
[25] on the transformed matrix. The spectral-based methods
are popular because the change of representation induced by
eigenvectors makes the community structure more obvious.

Objective function is the function to express our goal in
mathematical terms. No matter how the community is de-
fined, the commonly accepted goal for community detection
can be boiled down to two objectives: (1) More connections
are inside each community. (2) Fewer connections are across
different communities. Since there are two objectives, people
have proposed many different methods to strike a different
balance between them. There are various kinds of objective
functions for community detection [1]. For example, density-
based methods [26] try to find the communities within which
nodes are tightly connected with each other. We define the
internal-community density d;n:(S) of the subgraph S as the
ratio of the number of internal edges of S to the number of
all possible internal edges, i.e. d;n:(S) = #@)/2
kint(S) is the number of internal edges of S. Similarly, the
_keat(S) _por § to
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be a community, we expect large dint(S) and small degt(S).

where

external-community density des:(S) =



Searching for the best tradeoff between dint(S) and dezt(.S)
is the goal of density-based methods. A simple way of doing
that is to maximize the sum of the difference d;nt (S)—0dext(S)
[26]. Another example is modularity-based methods which
search the partition that maximizes the modularity function
[9]. Although the modularity function is originally intro-
duced as a stopping criterion for hierarchical methods [19],
it has rapidly become an essential element of many cluster-
ing methods by searching the partitions that maximize it.

Search procedure is the way we search the optimal so-
lution according to the objective function. However, for the
most objective functions, finding the optimal value is very
slow. For example, it has been proved that modularity op-
timization is an NP-complete problem [7]. Therefore, many
different heuristic search algorithms, including greedy search
[9, 38], simulated annealing [27], extremal optimization [6,
14], and genetic algorithms [31], are used.

According to different survey studies [16, 40] on commu-
nity detection, modularity-based methods are considered as
one classical type of methods. Despite the vast amount of
expert endeavor spent on different optimization techniques
to maximize the modularity function, there is little analysis
on the modularity function itself, and the most analysis on
the modularity function is related to the calculation of the
edge probability [17] or the extension to complicated net-
works [3]. In addition, modularity-based methods suffer the
well-known resolution limit problem [22]. This problem also
cannot be solved by multi-resolution methods [33] as two
concurrent biases, the tendency to merge small communi-
ties and to split large communities, are introduced.

The modularity function [9] searches for partitions that
the actual number of edges is larger than the expected num-
ber of edges inside communities under the assumption of
random partition, while correlation analysis on itemset min-
ing [13, 18, 36] searches for itemsets that occur more than
the expected occurrence if items are independent from each
other. Since both modularity on community detection and
correlation analysis on itemset mining search for patterns
that actually happens more than what is expected under the
assumption of independence, this paper builds the connec-
tion between the modularity function and correlation mea-
sures, and changes the modularity function from the correla-
tion perspective, through which the resolution limit problem
of the original modularity function can be solved and per-
formance can be improved. The focus in this paper is on the
improvements over the modularity function from the corre-
lation perspective. In order to have a fair comparison within
the framework of correlation, the original modularity func-
tion is treated as a baseline for the performance evaluation
rather than other commonly used objective functions such
as density [26] and conductance [21]. Although the modu-
larity function can be combined with fuzzy logic for over-
lapping community detection [29], we limit our performance
evaluation to non-overlapping community detection in this
paper. The rest of the paper is organized as follows. Section
2 introduces the basic notation of correlation analysis and
modularity-based community detection. We build the con-
nection between correlation analysis and modularity-based
community detection by subtly reformatting their math for-
mulas, and introduce a novel theoretical analysis on the bias
of different correlation measures by analyzing their upper
bounds in Section 3. Experiments on both real life and sim-
ulated datasets are conducted to test different methods in

Section 4. Finally, we draw a conclusion and point out future
directions in Section 5.

2. BASIC NOTATION

Since we try to improve modularity-based methods from
the correlation analysis perspective, the basic concepts of
correlation and modularity-based community detection will
be introduced first before connecting them.

2.1 Correlation Analysis

Most of the correlation analysis in the data mining area is
conducted on the context of itemset mining. Therefore, we
follow the routine to introduce the basic concept of correla-
tion. Given an itemset S = {I1, I, ..., I, } with m items in a
dataset with sample size n, the true probability is tp = P(S),
the expected probability under the assumption of indepen-
dence among items is ep = [[*, P(I;). Many functions
have been proposed to measure correlation [12, 13, 18, 36].
Here, we only introduce four typical correlation measures,
Simplified x?, Probability Ratio, Leverage, and Likelihood
Ratio, which are derived from the simple statistical theory
and enough for generality.

2.1.1 Simplifie x*

The x? test is arguably the most popular statistical check
for correlation, and is specifically designed for use with cate-
gorical data. It is calculated as x* = 3, > (1
If an itemset contains m items, 2™ cells in the contingency
table must be considered for the above x? statistic. The
computation of the statistic itself is intractable for high-
dimensional data. However, we can still use the basic idea
behind x? to create Simplified x* [20]: x> = (r—FE(r))?/E(r),
ie., n- (tp — ep)*/ep , where the cell  corresponds to the
exact itemset S and n is the total number of records. Since
Simplified x? is more computationally desirable, we only
discuss the properties and experimental results of Simpli-
fied x2. The value of Simplified x? is always larger than 0
and cannot differentiate positive from negative correlation.
Therefore, we take advantage of the comparison between tp
and ep. If tp > ep, it is a positive correlation. Then Simpli-
fied x? is equal to n- (tp—ep)?/ep. If tp < ep, it is a negative
correlation. Then Simplified x? is equal to —n-(tp—ep)?/ep.
This transformed Simplified x? is mathematically favorable.
Larger positive numbers indicate stronger positive correla-
tion, 0 indicates no correlation, and larger (in magnitude)
negative numbers indicate stronger negative correlation.

2.1.2  Probability Ratio/Lift/Interest Factor

Probability Ratio (also known as Lift or Interest Factor)
[8] is the ratio of an itemset’s true probability to its ex-
pected probability under the assumption of independence.
It is calculated as follows: ProbabilityRatio(S) = tp/ep.
This measure is straightforward and means how many times
the itemset S happens more than expected. However, this
measure might not be a good correlation measure to use.
The problem is that it favors the itemsets containing a large
number of items rather than significant trends in the data.

2.1.3 Leverage

An itemset S with higher occurrence and low Probability
Ratio may be more interesting than an alternative itemset
S’ with low occurrence and high Probability Ratio. Intro-
duced by Piatesky-Shapiro [30], Leverage(S) = tp — ep. It

— E(ri;))?/E(ri).



measures the difference between the true probability of an
itemset S and its expected probability if all the items in S
are independent from each other. Since ep is always no less
than 0, Leverage(S) can never be bigger than tp. Therefore,
Leverage is biased to high-occurrence itemsets.

2.1.4 Likelihood Ratio

Likelihood Ratio is similar to a statistical test based on the
loglikelihood ratio described by Dunning [15]. We take the
ratio of the likelihood under our hypothesis of independence
to the likelihood of the best “explanation” overall. To apply
the likelihood ratio test as a correlation measure, we use the

- p)(n_0)7

where p is the probability of a given itemset S, o is the
occurrence of the itemset S, and n is the total number of
transactions. Given our assumption of independence of all
items, we predict that each trial has a probability of suc-
cess ep. Therefore, the chance for us to observe o out n
transactions contain S is Pr(ep,0,n) under the assumption
of independence. However, the best possible explanation for
the single trial probability is ¢p instead of ep according to
the observed data. In order to measure to what extent our
assumption of item independence was violated in practice,
we comparing the null hypothesis of independence with the
best possible explanation. Formally, the Likelihood Ratio in
this case is LikelihoodRatio(S) = Pr(tp,o,n)/Pr(ep,o,n).
The Likelihood Ratio strikes a balance between the Proba-
bility Ratio and the actual occurrence o. It favors itemsets
with both high Probability Ratio and high occurrence. For
the itemsets containing a small number of items, their oc-
currence tends to be high, but the Probability Ratio tends
to be low, while, for the itemsets containing a large number
of items, their Probability Ratio tends to be high, but the
actual occurrence tends to be low. Likelihood Ratio favors
middle-sized itemsets which can strike a balance between
the Probability Ratio and the actual occurrence. The nu-
merator of the Likelihood Ratio is the maximal likelihood of
the real situation, so the Likelihood Ratio is always larger
than 1 and cannot differentiate positive from negative cor-
relation. Therefore, we conduct the similar transformation
we do for Simplified x? by comparing tp with ep.

binomial distribution Pr(p,o,n) = ( Z >po(1

2.2 Modularity-based Community Detection

The modularity function has several variants, but these
variants share the same idea. Without the loss of general-
ity, we introduce the original modularity-based method [9].
Given a graph with n nodes and m links represented by the
adjacency matrix W, the expected number of edges falling
between two nodes i and j is k; - k;j /(2m) under the assump-
tion of independence where k; is the degree of node i. The

modularity @ is calculated as 7 >y (wij — k;:ﬂ” )+ 6(vi,v5).
It is the sum of the difference between the actual number of
edges and the expected number of edges over all the pairs
of nodes in the same community. §(v;,v;) is the Kronecker
delta function whose value is equal to 1 if v; and v; are in
the same community and O otherwise. Initially, each node
is the only member of its own community. The original al-
gorithm iteratively joins the two communities that increase
the modularity most in the current round. The original al-
gorithm will stop if the best merge cannot further increase
modularity.

3. CORRELATION ANALYSIS AND MOD-
ULARITY

3.1 Connecting Modularity-based Community
Detection with Correlation Analysis

In this section, we subtly transform the modularity func-
tion and connect it with correlation measures. Given a par-
tition with I groups {G1,Gs,...,G;} for the graph G with
n nodes and m links, the modularity Q is 5= > (wi —

%7—) - §(vi,vj). For the node v, in the group Gy, ki** is
the number of the nodes in the group G, that connect to
vg. The partial modularity @p, which all the nodes in the

group G, contribute to the overall modularity function, is
3 Dicayjea(Wis — 5mt) - 0(vi, v5).

Therefore,
_ wij - 8(vi,v;) ki - kj - 6(vi, v))
Q@ = ) Z 2m ) Z (2m)?
i€Gp,j€EG i€Gp,j€EG

- Z 2 jec Wij - 6(vi, v)) _Z ki - deck - 8(vi, v5)

) 2m m)?

i€Gp i€Gp
-y z’“ Zﬂ“’f’

i€Gyp i€Gp

int
Zier ki _ Ziecp ki ] Zjec,, k;
2m 2m om

It is easy to calculate that the total number of links in-
side Gp is 3¢, ki™" /2 and the total number of links in the

graph G is m. If we randomly select a link from the graph

. e . Yiea, M2
G, the probability of the link inside G, is ——2——. Sim-
ilarly, the probability of the link with at least one end inside

Gy is 2162727’7 when we randomly select a link from the
graph G. If the partition with ! groups {G1,Gs,...,G;} for
the graph G is totally random, the probability of the link
with the other end inside G from the links with one end

Yieap ki Xjegy ki
already inside Gp, is —52— - =252~ Therefore, given a

partition with ! groups {G1, G2, ... Gl} for the graph G, if
we randomly select a link from the graph G, the true prob-

int
ability of the link being inside G, tp, is 21637;]%, and the
expected probability of the link being inside G, under the as-
Yiegy, Fi Yjea, ki
sumption of independent partition, ep, is 277: 27
Therefore, the partial modularity function @, can be rewrit-
ten as: Qp = tp—ep. By comparing the correlation measure
Leverage(S) = tp — ep, we can see the modularity function
shares the same idea with the correlation measure Leverage.
Since the other correlation measures are also functions of tp
and ep, we can change the partial modularity function @, by
using the formula of other correlation measures. In the rest
of the paper, instead of using the term modularity, we use
Simplified x?, Probability Ratio, Leverage, and Likelihood
Ratio referring to the corresponding changed partial modu-
larity function @, and Leverage is the original modularity
community detection method.

3.2 Upper Bound Analysis

The performance differences among different correlation
measures have been recognized since 2004 by two very influ-
ential papers [18, 36] in the data mining area. They catego-
rized measures according to their different property satisfac-



tion. By categorizing measures, users only need to check the
performance of the typical measure in each category instead
of all the possible measures. However, two measures can still
generate different results even if they satisfy the same set of
properties. Instead, one recent paper [37] categorized mea-
sures directly according to their final result similarity. No
matter how categorizing measures, the fundamental ques-
tion is still not answered. If there is a difference between
results of two measures, what is the difference? In this sec-
tion, we provide a novel way to understand the performance
difference by analyzing the upper bound of different partial
modularity functions @, inferred from different correlation
measures. Simplified x?, Probability Ratio, Leverage, and
Likelihood Ratio all satisfy the third correlation property
proposed by Piatesky-Shapiro [30]: The correlation Measure
M monotonically decreases with the increase of ep when tp
remains the same. According to the above correlation prop-
erty, the measures reach their upper bound when tp is fixed
and ep reaches its lower bound.

THEOREM 1. Simplified x?, Probability Ratio, Leverage,
and Likelihood Ratio monotonically decreases with the in-
crease of ep when tp remains the same.

Proor. Simplified x?: When tp > ep, x* = n - (tp —
ep)?/ep. If we consider Simplified x? as a function of ep,
then x*' = n - (ep® — tp*)/ep®. Since 0 < ep < tp < 1,
ep? < tp®. Therefore, )(QI(S) < 0. Similarly, when tp < ep,
x> =—n-(tp—ep)®/ep and x*' = —n - (ep” — tp*)/ep® < 0.
In all, Simplified x? decreases with the increase of ep.

Probability Ratio: When tp is fixed, Probability Ratio,
tp/ep, decreases with the increase of ep.

Leverage: When tp is fixed, Leverage, tp — ep, decreases
with the increase of ep.

Likelihood Ratio: When tp > ep,

In(LR(S)) n - tp- (In(tp) — In(ep))
+n-(1—tp) - (In(1 —tp) —In(1l —ep))
n-tp-In(tp) —n - tp - In(ep)
+n-In(l —tp) —n-In(l — ep)
—n-tp-In(l—tp)+n-tp-In(l —ep)

tp
1—-tp

n-tp-ln +n-In(l—tp)

1—
—n-in(l—ep)+n-tp-in b
€p

If we consider In(LR(S)) as a function of ep, then

In(LR(S)) = l,nep S fe;f ep
_ n-(ep—tp)
(L—ep)-ep’

Since tp > ep, then In(LR(S))" < 0. In other words,
Likelihood Ratio decreases with the increase of ep when tp >
ep. Similarly, when ¢p < ep, we can prove Likelihood Ratio
decreases with the increase of ep. In all, Likelihood Ratio
decreases with the increase of ep.

O
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Figure 1: Upper bounds of different measures for a
single community

Given a partition with { groups {Gi1,Ga2,...,G;} for the
graph G, the true probability of a link being inside Gy, tp,
5 Tieay *i Tiegp ki

2 2m

, and the expected probability, ep, is

E’ZiifJ. Ify e Gy k" is fixed, the lowest possible value for

Yiea, ki s Xica, ki because k™ < k;. In other words,
when tp for the group G, is fixed, the lowest possible value
for ep is tp®. When ep = tp?, the measures reach their upper
bound. Figure 1 shows the upper bounds of the various mea-
sures with respect to different tp for a single community. It
is easy to see that different measures favor groups within dif-
ferent tp ranges. The upper bound of Simplified x? increases
to 1 and that of Probability Ratio increase to infinity when
tp is close to 0, which means they favor extremely small
groups rather than large groups. Leverage and Likelihood
Ratio reach their highest upper bound when tp is between
0 and 1. According to the graph, Leverage does not favor
the group which contains more than half of the edges in the
graph since its upper bound starts to decrease even when
the group size increases. Similarly, Likelihood Ratio does
not favor the group which contains more than roughly one
quarter of the edges in the graph. In all, Probability Ratio
favors the smallest groups, followed by Simplified x?, Like-
lihood Ratio, and Leverage.

4. EXPERIMENTS
4.1 Experiment Settings

Most prior research on modularity-based methods sets
modularity as their objective function and uses different op-
timization techniques to search for the partition that gen-
erates the highest value. In this paper, instead of explor-
ing better optimization techniques for the same objective



function, we change the objective function and study what
kinds of difference the various objective functions make. In
order to conduct the fair comparison for different objective
functions, we choose greedy search, the simplest optimiza-
tion technique, which is also used by the original modularity
method and generates reasonably good results [9]. Initially,
each node is the only member of its own community. The
algorithm iteratively join the two communities that increase
the objective function most in the current round. The algo-
rithm will stop if the best merge cannot further increase the
objective function. In this section, we conduct experiments
on both real life and simulated datasets.

4.1.1 Real Life Data

The two real life datasets include Karate Club [41] and
College Football [19], as shown in Figure 2 !. As we men-
tioned in Section 1, we only conduct the performance evalua-
tion on non-overlapping community detection. The existing
large datasets with ground truth that we can find are all
for overlapping community detection, so we can only do the
performance evaluation on large datasets of simulated data.
The karate dataset contains friendships between 34 members
of a karate club at a US university in the 1970s. There was
a disagreement between the administrator and the instruc-
tor in the club, which resulted in two communities in this
graph. The football dataset records games between Division
TA colleges during regular season Fall 2000. There were 115
teams in 12 different conferences.

(b) Football

Figure 2: Real data sets

4.1.2  Simulated Data

With regard to graph simulation, the first related work is
called the planted L-partition model [10]. The model simu-
lates a graph with n = g %[ nodes in [ groups with g nodes
each. Nodes of the same group are linked with a probability
Pinternal, Whereas nodes of different groups are linked with
a PrObablhty Pexternal- If Pinternal > Dexternals the intra-
cluster edge density exceeds the inter-cluster edge density.
Then the graph has a community structure which is quite in-
tuitive. However, by using the planted L-partition model, all
nodes have approximately the same degree and all commu-
nities have exactly the same size. In the real social network
data, degree distributions are usually skewed, with many
nodes with low degree and a few nodes with high degree.
A similar heterogeneity is also observed in the distribution
of community size. Recently, Lancichinetti et al. [23] intro-
duced a very popular LFR model. They assume that the

LAll the network visualization in this paper is visualized by
Pajek Software

distributions of degree and community size are power laws
with 71 and 72 respectively. Each node shares a fraction of
1 — u of its edges with the nodes in the same community
and a fraction of u with the nodes in the other communities,
where u is the mixing parameter. Since the LFR model is
much more realistic, we will use the graphs generated by this
model to test our algorithms. The simulation procedure is
as follows:

1 A set of community sizes s; following the predefined
power law parameter T2 is generated.

2 A set of node degrees k; following the predefined power
law parameter 71 is generated. The internal degree of
each node is (1 —u)k; where u is the mixing parameter.

3 In the beginning, nodes are not assigned to any com-
munity. Each node is assigned to a randomly-chosen
community which has empty spots to accept a new
node. If the community size exceeds the internal de-
gree of the node, the node enters the community; oth-
erwise, it enters a waiting list.

4 For each node in the waiting list, we let the node enter
a random community whose size exceeds the node’s
internal degree and randomly kick one node in the se-
lected community out to the waiting list. We do this
step iteratively until the waiting list is empty.

5 We enforce the condition on the fraction of internal
degree and external degree. The rewiring procedure in
[4] is performed when needed.

However, the constraint used in the LFR model to assign
the internal degree of each node in the second step is prob-
lematic because the condition imposed by a fixed u cannot
guarantee Pinternal > Pexternal Which must be satisfied for
a community structure. For a node A in a community with
n' nodes in a graph with n nodes, © must be smaller than
1 —n'/n to guarantee pinternai > Pexternal- Lherefore, we
use the following constraint to assign the internal degree of
each node in the second step: pinternal = B Pexternal, Where
[ is the ratio to control the community structure and must
be greater than 1.

There are 8 parameters related to the LFR simulation
model: the total number of nodes, the minimal node degree,
the maximal node degree, the power law parameter for node
degree, the minimal community size, the maximal commu-
nity size, the power law parameter for community size, and
the ratio 8 for community structure. In order to avoid bias
to different objective functions, we choose greedy search, the
simplest optimization technique. However, greedy search
can only handle 2,000 nodes within a reasonable amount of
time. Therefore, we also use a fast unfolding search tech-
nique [5] to handle the network with more than 1 million
nodes, which is closer to the real world network size.

Given the number of nodes is 2,000, we conduct 9 sets of
experiments and the parameter values are shown in Table
1. In order to check the performance difference on different
community sizes and tightness of community structure, we
only change the minimal community size and the ratio 3 for
community structure to generate different graphs. When the
minimal community size is 5, there are a lot of small com-
munities, some mid-size communities, and a few large com-
munities, while the graph only contains large communities



(a) Bis 5 (c) B is 20

Figure 3: Simulated data sets

when the minimal community size is 100. The community
structure is fuzzy when 3 is 5, while it is clear when ( is
20. How the [ affects the community structure is shown in
Figure 3. Given the number of nodes is 300,000, we conduct
a similar set of 9 experiments and the parameter values are
also shown in Table 1.

4.1.3 Evaluation Measures

After finding communities in a given graph, we need to
compare our search results with the “actual communities”
(the ground truth). For two partitions X = (X1, X2, ..., Xn,)
and Y = (Y1,Y,...,Y,,) of a graph, X is determined by
the algorithm with n, communities and Y is the ground
truth with n, communities. We need a criterion to mea-
sure how similar the partition result of the algorithm is to
the partition we hope to find. Many different measures,
such as Normalized Mutual Information [11], Jaccard, Rand
Index [32], and F-measure [34], have been proposed, and
they can be divided into three categories: pair counting,
community matching, and information theory [2]. Since
different measures have different bias, we show the exper-
imental results on different measures, but focus our analy-
sis on the most widely accepted measure, Normalized Mu-
tual Information. First, it calculates Mutual Information:
MI =325, P(Xin Yj)log%. M1 measures the
amount of information by which our knowledge about the
community in one partition increases when we are told what
the community in the other partition is. The minimum of
MTI is 0 if the X partition is random with respect to the
Y partition. However, given a partition Y, all partitions
derived from Y by further partitioning have the same mu-
tual information with Y, even though they are different from
each other. In this case, the mutual information is equal to
the entropy H(Y) = — >, P(Y;)log(P(Y;)). To avoid that,
Danon et al. [11] proposed the normalized mutual informa-
tion: NMI = % It is currently often used and
reaches its maximal value 1 if X partition is identical to Y
partition.

4.2 Evaluation on Real Life Datasets

The result on real life datasets is shown in Table 2 2. The
best method for Karate dataset is Leverage. The result is
consistent with our theoretical analysis. The karate dataset
only contains two large communities, and Leverage is the
method having the most bias to large communities. Both
Simplified x? and Likelihood Ratio are good for the football
dataset. This dataset contains 12 almost equal size com-

2RI: Rand Index; DNC: the detected number of communi-
ties; ANC: the actual number of communities; x?: Simplified
x?; PR: Probability Ratio; and LR: Likelihood Ratio

munities. According to Figure 1, Likelihood Ratio has the
bias to middle-size communities, and Simplified x? has the
bias, but not the extreme bias, to small communities. It is
why Simplified x? and Likelihood Ratio work better on the
football dataset.

4.3 Evaluation on Simulated Datasets

For each parameter setting, we generate the graph 10
times to test each method. We calculate the average value
for each evaluation measure shown in Table 3 and 4. Since
the result of 2,000 nodes is very similar to that of 300,000
nodes, we focus our analysis on the result of 2,000 nodes.
In addition, different evaluation measures provide different
information. Since NMI is the most widely-accepted mea-
sure, we focus our discussion on NMI in the following. The
average NMI and the average number of partitioned commu-
nities generated by each method for each parameter setting
are shown in Figures 4 - 7.

Figure 4 shows the NMI achieved by each method and
Figure 5 shows the number of partitioned communities when
fixing the minimal community size and changing the ratio 3.
No matter what the minimal community size and the ratio
B are, the NMI and the number of partitioned communi-
ties for both Simplified x? and Probability Ratio are almost
the same. They always detect more than 500 communities.
Since the total number of nodes is 2,000, most of the com-
munities they detect contain 2 or 3 nodes. That supports
our observation in Section 3 that Simplified x? and Proba-
bility Ratio favor small size communities. No matter what
the minimal community size is, both Leverage and Likeli-
hood Ratio achieve better NMI when the community struc-
ture becomes clearer. Only when the community structure
is clear and the whole graph only contains large commu-
nities, the NMI of Leverage is better than that of Likeli-
hood Ratio. Leverage has more bias towards large commu-
nities than Likelihood Ratio according to our upper bound
analysis; therefore, we are expecting Leverage is better than
Likelihood Ratio when the graph only contains large com-
munities. In practice, social networks contain a lot of small
communities; therefore, Likelihood Ratio is better in the
common case. The number of partitioned communities by
Leverage is almost the same no matter how we change the
minimal community size and the ratio 3, while the number
of partitioned communities by Likelihood Ratio get closer
to the ground truth when the community structure becomes
clearer. Another interesting observation related to Leverage
is that its NMI is very low when the minimal community
size is large under the fuzzy community structure. Even
under the fuzzy community structure, Leverage detects the
same number of large communities. Such a partition assigns
many nodes in different real communities to the same par-
titions, which results in the low NMI. Generally speaking,
the partition generated by Likelihood Ratio is better and
more adaptive to the different types of graphs than that of
Leverage.

Figure 6 shows the NMI achieved by each method and
Figure 7 shows the number of partitioned communities when
fixing the ratio # and changing the minimal community size.
Since both Simplified x? and Probability Ratio favor small-
size communities, their NMI decreases with the increase of
the minimal community size no matter the community struc-
ture is fuzzy or clear. The NMI of Likelihood Ratio decreases
with the increase of the minimal community size when the



Parameter Data set A Data set B
The total number of nodes 2000 300000
The minimal node degree 5 50
The maximal node degree 300 3000
The power law parameter for node degree 2.5 2.5
The minimal community size 5, 50, or 100 | 50, 500, or 5000
The maximal community size 300 10000
The power law parameter for community size 1.5 1.5
The ratio 8 for community structure 5, 10, or 20 5, 10, or 20

Table 1: Parameter Setting for Simulated Graphs

Data Set | Measure NMI Jaccard RI F-measure | DNC | ANC
X2 0.4852 0.2842 0.6453 0.4426 7 2
Karate PR 0.3868 0.0945 0.5561 0.1728 11 2
Leverage 0.6925 0.6833 0.8414 0.8118 3 2
LR 0.5385 0.3958 0.6952 0.5671 5 2
% 0.9141 0.7571 0.9793 0.8618 14 12
Football PR 0.6864 0.0829 0.9240 0.1531 55 12
Leverage | 0.6977 0.3622 0.8807 0.5317 6 12
LR 0.9086 0.7897 | 0.9812 0.8825 12 12
Table 2: Results on real life datasets
Data Set Measure NMI Jaccard RI F-measure | DNC | ANC
% 0.5868 0.0122 0.9391 0.0240 629.5 | 50.8
MCS=5 PR 0.5856 0.0062 0.9390 0.0124 903.3 | 50.8
B=5 Leverage 0.1222 0.0809 0.7749 0.1481 9.4 50.8
LR 0.5515 0.0272 0.9388 0.0530 300.5 | 50.8
X2 0.6023 0.0146 0.9397 0.0289 604.8 | 51.2
MCS=5 PR 0.5937 0.0068 0.9394 0.0136 905 51.2
pB=10 Leverage 0.2741 0.1523 0.7900 0.2605 7.5 51.2
LR 0.5992 0.0462 0.9406 0.0883 263.4 | 51.2
% 0.6212 0.0196 0.9436 0.0385 564.6 | 51.8
MCS=5 PR 0.6035 0.0089 0.9432 0.0177 855.7 | 51.8
£B=20 Leverage | 0.5349 0.2265 0.8215 0.3658 6.8 51.8
LR 0.7545 | 0.5136 | 0.9714 0.6699 139.5 | 51.8
X2 0.4775 0.0091 0.9177 0.0181 586.2 16
MCS=50 PR 0.4765 0.0054 0.9176 0.0107 777.6 16
B=5 Leverage 0.1172 0.1016 0.7754 0.1820 9.2 16
LR 0.4314 0.0194 0.9172 0.0381 283.7 16
% 0.5075 0.0125 0.9240 0.0246 554.3 16.5
MCS=50 PR 0.4969 0.0069 0.9237 0.0137 747.9 16.5
B=10 Leverage | 0.4318 0.2523 0.8302 0.3983 6.2 16.5
LR 0.5040 0.0507 0.9259 0.0958 243.3 16.5
% 0.5280 0.0154 0.9211 0.0303 533 15.8
MCS=50 PR 0.5065 0.0076 0.9205 0.0151 758.4 15.8
B=20 Leverage | 0.7375 0.4098 0.8886 0.5773 6.5 15.8
LR 0.7663 | 0.6430 | 0.9703 0.7778 67.9 15.8
% 0.4210 0.0073 0.8978 0.0145 568.9 10.7
MCS=100 PR 0.4243 0.0044 0.8977 0.0088 750 10.7
B=5 Leverage | 0.1471 0.1330 0.7710 0.2336 8.5 10.7
LR 0.3727 0.0156 0.8972 0.0306 280.2 10.7
% 0.4538 0.0092 0.9038 0.0183 571.9 11.3
MCS=100 PR 0.4514 0.0053 0.9036 0.0106 7742 11.3
pB=10 Leverage | 0.5587 | 0.3423 0.8532 0.5038 6.2 11.3
LR 0.4458 0.0287 0.9046 0.0558 250.8 11.3
X2 0.4844 0.0128 0.9016 0.0253 522.6 11.2
MCS=100 PR 0.4657 0.0069 0.9010 0.0138 721.9 11.2
B=20 Leverage | 0.8318 0.5755 0.9291 0.7300 6.8 11.2
LR 0.7614 0.6550 0.9638 0.7851 52.2 12

Table 3: Results on simulated datasets with 2,000 nodes




Data Set Measure NMI Jaccard RI F-measure DNC ANC
% 0.5567 0.0007 0.9882 0.0057 87651.0 428.2

MCS=50 PR 0.5294 0.0002 0.9882 0.0068 117151.1 | 428.2
B=5 Leverage | 0.0698 0.0173 0.6044 0.0642 5.6 428.2
LR 0.5145 0.0006 0.9882 0.0088 56275.7 428.2

X2 0.5731 0.0007 0.9889 0.0060 89529.1 458.4

MCS=50 PR 0.5413 0.0002 0.9889 0.0071 118370.6 | 458.4
B=10 Leverage | 0.0941 0.0191 0.6488 0.0715 7.4 458.4
LR 0.5349 0.0008 0.9889 0.0094 55654.8 458.4

% 0.5793 0.0007 0.9880 0.0056 91573.8 433.7

MCS=50 PR 0.5427 0.0002 0.9880 0.0067 119961.7 | 433.7
£B=20 Leverage | 0.3588 0.0486 0.7721 0.2688 11.1 433.7
LR 0.6270 | 0.5480 | 0.9947 0.2805 38997.4 433.7

% 0.5009 0.0005 0.9860 0.0021 86258.5 135.7

MCS=500 PR 0.4730 0.0001 0.9860 0.0018 103355.6 | 135.7
B=5 Leverage | 0.0534 0.0182 0.6446 0.0661 4.7 135.7
LR 0.4625 0.0005 0.9860 0.0024 56536.5 135.7

% 0.5156 0.0005 0.9863 0.0022 87168.8 139.2

MCS=500 PR 0.4816 0.0002 0.9863 0.0018 104363.0 | 139.2
B=10 Leverage | 0.2004 0.0354 0.7473 0.2048 7.3 139.2
LR 0.4828 0.0006 0.9863 0.0026 56810.1 139.2

% 0.5234 0.0006 0.9854 0.0021 88439.6 131.2

MCS=500 PR 0.4854 0.0002 0.9854 0.0018 104308.4 | 131.2
B=20 Leverage | 0.5731 0.0866 0.8531 0.4551 20.4 131.2
LR 0.7106 | 0.8050 | 0.9972 0.6000 18350.4 131.2

X2 0.3747 0.0001 0.9751 0.0006 81634.5 41.7

MCS=5000 PR 0.3427 0.0001 0.9751 0.0005 68326.2 41.7
B=20 Leverage | 0.0099 0.0226 0.8037 0.0632 10.0 41.7
LR 0.3456 0.0001 0.9751 0.0007 58845.6 41.7

% 0.3885 0.0002 0.9748 0.0007 81365.6 41.4

MCS=5000 PR 0.3521 0.0001 0.9748 0.0006 65978.2 41.4
£B=20 Leverage | 0.8037 | 0.2315 0.9099 0.6057 19.2 41.4
LR 0.3726 0.0003 0.9748 0.0010 58409.5 41.4

X2 0.4053 0.0002 0.9749 0.0008 80492.0 41.4

MCS=5000 PR 0.3737 0.0002 0.9749 0.0008 64004.6 414
B=20 Leverage | 0.8964 0.4267 0.9635 0.7332 24.8 41.4
LR 0.9971 0.9962 0.9999 0.9964 214.4 41.4

Table 4: Results on simulated datasets with 300,000 nodes

community structure is not clear. However, when the com-
munity structure is clear, Likelihood Ratio achieves almost
the same performance with the increase of the minimal com-
munity size. The NMI of Leverage always increases with the
increase of the minimal community size since it has the bias
to large communities.

S. CONCLUSION

In this paper, we connect modularity-based methods with
correlation analysis by subtly reformatting their math for-
mulas, and make smart use of different correlation measures
to change the objective function of modularity-based meth-
ods. A novel theoretical analysis on upper bounds is con-
ducted to analyze the bias of different objective functions
and the bias is validated by our experiments. Using the
widely-accepted Normalized Mutual Information to compare
the partitions determined by the algorithm with the ground
truth, Likelihood Ratio is better and more robust. However,
different measures can be used for different purposes. For
example, Probability Ratio can be used if we want to fairly
partition the students in the class into small groups for class
projects, and we might use Leverage to find relatively large
groups for marketing campaigns. As shown above, our find-
ing provides a more natural and effective way to solve the
resolution limit problem of the original modularity function
by modifying it through different correlation measures. In
the future, we will investigate more correlation measures,
and test performance differences for detecting overlapping
communities.
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