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ABSTRACT

Ensemble methods have recently garnered a great deal of
attention in the machine learning community. Techniques
such as Boosting and Bagging have proven to be highly ef-
fective but require repeated resampling of the training data,
making them inappropriate in a data mining context. The
methods presented in this paper take advantage of plentiful
data, building separate classifiers on sequential chunks of
training points. These classifiers are combined into a fixed-
size ensemble using a heuristic replacement strategy. The
result is a fast algorithm for large-scale or streaming data
that classifies as well as a single decision tree built on all the
data, requires approximately constant memory, and adjusts
quickly to concept drift.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Management—
Database Applications[Data Mining]

General Terms

ensemble classification, streaming data

1. INTRODUCTION

One of the most common and well-studied tasks in pre-
dictive data mining and knowledge discovery is that of clas-
sification. Over the past 25 years, a great deal of research
has been performed on inductive learning methods for clas-
sification such as decision trees, artificial neural networks,
and support vector machines. All of these techniques have
been successfully applied to a great number of real-world
problems. However, their standard application requires the
availability of all of the training data at once, making their
use for large-scale data mining applications problematic.

Many organizations are collecting data at the rate of mil-
lions of records per day. Processing this data poses a signif-
icant challenge for existing data mining methods; consider,
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for example, a retail chain predicting the success of a par-
ticular marketing campaign, a telephone company detecting
fraudulent phone card calls, or an online company determin-
ing which Web pages lead customers to place an order. Even
in cases where we cannot read all of the training examples
into memory at one time, we would like to use all the avail-
able information when building our classifier. Further, such
problems are subject to gradual or sudden changes in the un-
derlying concept, as business conditions not reflected in the
predictive features — the “hidden context” [22] — can change
without warning. This concept drift requires an algorithm
that can adjust quickly to changing conditions.

One approach to large-scale classification is to improve
the storage efficiency of the induction algorithm, allowing
its use on much larger problems. This approach is exem-
plified by the work of Gehrke et al. [12] who developed
a decision tree algorithm with dramatically improved effi-
ciency. Their BOAT algorithm builds an initial tree on a
subset of the data and refines it iteratively as new data are
read, concluding with a tree identical to one that would be
built by the original algorithm. The VFDT algorithm of
Domingos and Hulten [8] also builds a decision tree incre-
mentally, using a small subset of examples to determine the
split at a given node. They employ Hoeffding bounds to
show that the resulting tree can be made arbitrarily sim-
ilar to one that would be built from all the data. Other
approaches to scaling include those developed for support
vector machines by Mangasarian and colleagues, including
chunking [16] and instance selection [11]. Finally, the many
formulations for feature selection in machine learning could
be considered scaling mechanisms, since they result in di-
mensionality reduction, although most were motivated by
overfitting avoidance.

In this study we approach the problem of large-scale or
streaming classification by building committee or ensemble
classifiers that combine the results of many classifiers, each
constructed on a subset of the available data points. It has
long been known that the combined expertise of a committee
of experts can outperform an individual expert, particularly
if their respective expertise is somehow different. Specifi-
cally, several analyses of ensemble methods have shown that
the correctness improved if the individual predictors make
errors that are independent of each other [14].

In recent years, a great deal of attention in the machine
learning community has been directed toward methods such
as Bagging and Boosting. Breiman’s Bagging algorithm [4]
is a variation of the bootstrap method that resamples the



data points with replacement to construct a collection of dif-
ferent training sets. The resulting classifiers are combined
with voting to find those concepts that are most often rein-
forced in the samples. Boosting [20], and its variants such
as AdaBoost [10] and Arcing [5], uses a weighted resampling
technique, creating a series of classifiers in which later indi-
viduals focus on classifying the more difficult points. Several
recent studies have examined the relative strengths of these
techniques; see for instance Bauer and Kohavi [1], and Opitz
and Maclin [18]. The current evidence seems to show that
Bagging consistently improves on the accuracy of a single
classifier, while Boosting is sometimes better (or even much
better) than Bagging but sometimes worse than a single
classifier, especially in the presence of noise.

While all of these methods result in highly accurate pre-
dictors, the necessity of resampling or re-weighting the data
points makes them inappropriate for large-scale applications.
Our motivation is the idea that even simple ensembles can
produce results that are comparable to individual classifiers.
Our solution to the problem is designed to meet the follow-
ing data mining desiderata, a superset of those outlined by
Fayyad et al. [9] for large-scale predictive methods:

1. Iterative: The algorithm must operate in an iterative
fashion, reading blocks of the data at a time, rather
than requiring all of it at the beginning.

2. Single pass: The algorithm should make only one
pass through the data.

3. Limited memory: Data structures used by the algo-
rithm should require an approximately constant amount
of memory, and should not have sizes that depend on
the size of the data.

4. Any-time learning: The algorithm should provide a
best answer if it is stopped before its conclusion.

The remainder of this paper is organized as follows. In
Section 2, we motivate and describe our framework for en-
semble construction. Section 3 describes the data sets used
in our experiments and shows the computational results.
Section 4 discusses the conclusions we reached based on
these experiments and outlines directions for future research.

2. METHODS

Our design, based on simple combinations of classifiers is
outlined as follows and represented as pseudocode in Fig-
ure 1. Individual classifiers are built from relatively small
subsets of the data, read sequentially in blocks. Compo-
nent classifiers are combined into an ensemble with a fixed
size. Once the ensemble is full, new classifiers are added
only if they satisfy some quality criterion, based on their es-
timated ability to improve the ensemble’s performance. In
this case, one of the existing classifiers must be removed,
maintaining the ensemble’s constant size. Performance es-
timates are done by testing the new tree (and the existing
ensemble) on the next chunk of data points. The building
blocks of all of our ensembles are decision trees constructed
using Quinlan’s C4.5 [19]. The only operational parameter
of C4.5 examined here is whether or not to prune the trees;
when they are pruned, the default setting is used.

We performed some preliminary experiments on this basic
framework, varying a number of operational parameters. A
few early results included:

while more data points are available
read d points, creating training set D
build classifier C; using D
evaluate classifier C;_1 on D
evaluate all classifiers in ensemble E on D
if E not full
insert C;_1
else if Quality(C;_1) > Quality(E;) for some j
replace F; with C;_;
end
end

Figure 1: Pseudocode for streaming ensembles. E;
represents the jth tree in ensemble E.

o Increasing the size of the ensemble resulted in better
generalization, up to around 20 or 25 classifiers. Obvi-
ously there is a trade-off between the number of classi-
fiers and the number of points per classifier with data
sets of limited size, unless resampling is performed.

e Pruning the individual trees resulted in decreased en-
semble accuracy, even though the accuracy of the trees
themselves was increased. This is consistent with the
findings of [21] who concluded that overtraining the
individual classifiers was a useful ensemble strategy.

e Simple variations on majority voting had little or no ef-
fect on ensemble accuracy. Weighting the votes based
on classifier accuracy, or on the confidence of each clas-
sification, resulted in small and inconsistent improve-
ments.

e We also experimented with a “gated” voting proce-
dure, in which a separate classifier G; was trained to
predict whether its corresponding classifier member
T; would correctly classify any given point. Ensem-
ble members would then vote only on cases they were
predicted to get right. This method also showed no
consistent improvement over simple voting.

These qualitative results are included here as motivation
for some of our design decisions. We set the number of en-
semble elements to 25, and combined their predictions with
majority voting (ties broken randomly). No gating or fil-
tering of the training examples was performed. Component
trees were not pruned.

The key to the performance of this algorithm is the method
used to determine whether a new tree should be added to
the ensemble, and which existing tree should be removed.
Metrics like accuracy can be accumulated based on many
individual estimates while the algorithm is running. Our
experiments show that simple accuracy is not the best met-
ric; as discussed earlier, classification diversity plays an im-
portant role in the ensemble’s performance. This suggests
that diversity should be built directly into the ensemble ob-
jective, as was done in [17]. However, in addition to the
problem of determining the right trade-off between accuracy
and diversity, it turns out that diversity is much harder to
measure in our framework. Estimates based on a single test
set are noisy, and accumulating the measurements over time
is problematic, since the ensemble mix is constantly chang-
ing. Another possibility is to favor classifiers that do well on
points misclassified by most of the ensemble, as in Boosting,
but this leaves the method susceptible to noisy data.

Instead, we favor classifiers that correctly classify points
on which the ensemble is nearly undecided. We give each



classifier (the new candidate and the ensemble members) a
quality score based on its ability to classify the points in
the current test set (i.e., the next set of points). If the tree
in question gets a point right (wrong), it’s quality goes up
(down) in proportion to how close the ensembles voting was
to 0.5 (for two-class problems). In this way, little credit (or
blame) is given to a case in which the ensemble was homo-
geneous in its predictions. If a point is easy, or impossible,
to classify, the effect of a new classifier will be minimal;
however, the classification of a point on which the ensem-
ble is evenly split could be decided by one vote either way.
This method may help overcome one problem of Boosting,
which performs poorly on data sets with classification noise
because of its emphasis on “hard” points.

More formally, we define the following percentages based
on the number of votes received by the various classes for a
given training point:

P; = percentage of top vote-getter

P> = percentage of second-highest vote-getter

Pc = percentage for the correct class

Pr = percentage for the prediction of the new tree T

If both ensemble E and new tree T are correct, the quality
measure for 7' is increased by 1 - |Py — P»|. That is, if the
vote was close, the new tree gets a high quality score, since
it could directly affect future votes. If T is correct but E
was incorrect, quality is increased by 1 - |P1 — P¢|. Finally,
if T’s prediction was incorrect (regardless of the outcome
of E), its quality is decreased by 1 - |Pc — Pr|. Note that
these quantities are defined for problems with an arbitrary
number of classes, although our experiments to date have
focused on two-class problems.

3. EXPERIMENTAL RESULTS
3.1 Accuracy

The following real-world data sets were used to evaluate
the effectiveness of the ensemble construction method.

e Adult: Data from the U.S. Census Bureau was origi-
nally used by Kohavi [15] to compare different classi-
fication methods. The classification problem is to pre-
dict whether a person makes more or less than $50,000
per year based on 14 demographic features such as age,
education level, marital status, occupation, and gen-
der. The data set contains 44,848 instances of which
29.3% are in the “over 50k” class.

e SEER breast cancer: The breast cancer data set from

the Surveillance, Epidemiology, and End Results (SEER)

program [6] of the National Institutes of Health con-
tains follow-up data on over 44,000 breast cancer pa-
tients. The cases were filtered to create a classification
problem. Class 1 contains those patients who died of
breast cancer within five years of surgery, and class 2
contains those with at least five years survival. This
filtering results in a data set of 37,715 cases, 25.7% of
which belong to class 1. Predictive features include
nuclear grade, tumor extent, tumor size, lymph node
status, and number of lymph nodes examined.

e Anonymous Web browsing: This data set records brows-
ing patterns for 32,710 anonymous visitors to the Mi-

crosoft Web site. We created a classification problem
in a manner similar to Breese, et al. [3] by choosing
to predict whether a visitor browses the “Free down-
loads” page, based on the other pages the user vis-
its. Filtered in this way, the data set contains 10,835
(33.1%) positive examples, and 296 binary features.

The first and third data sets are publicly available from
the UCI machine learning repository [2]. In all cases, the en-
semble methods were compared to the results of construct-
ing single decision trees on the entire training set. Data sets
were therefore chosen to be large enough to reliably test the
ensemble techniques but small enough to permit one-shot
training. The plots in Figures 2 through 4 represent the
results of a five-fold cross-validation run for both ensemble
and single-classifier solutions, as more data points become
available. Both pruned and unpruned single trees were eval-
uated in the single-classifier tests. Plots are shown at various
scales to make algorithm differences more clear.

In all cases, the accuracy of the ensemble method is com-
parable to that obtained with a single decision tree. Typi-
cally, the ensemble performance is between that of the pruned
and unpruned single trees, although in the case of the SEER
data, the ensemble did slightly better than the pruned tree.
Only on the Adult data are there points at which the clas-
sification rate of a full ensemble is statistically significantly
different (o = 0.05) from a single pruned tree trained on the
same number of points. Such a difference occurs on 27% of
the test increments for the Adult 1000 runs, and 83% for
the Adult 500 test. The performance of the ensemble on
this data, which is known to have classification noise, may
indicate that our approach still has a certain susceptibility
to noise.

Tests were also performed using fewer (100 and 200) points
for each tree. Results were consistently inferior to the 500
and 1000 points/tree cases shown in the plots. This indicates
that the quality of the component classifiers — and possibly
their ability to “overfit” their respective chunks of data —
still has a significant effect on the ensemble performance.

These runs were also used to evaluate the effectiveness
of our tree-replacement strategy by counting the number of
times the ensemble’s accuracy improved after the initial 25
trees were constructed. We observed improvement in 90% of
the runs on the Adult data, and 84% on the SEER data, and
58% on the Anonymous data. Using ensembles with fewer
elements improved these numbers, but had little or no effect
on overall accuracy. Our replacement strategy is appears to
be generally effective.

3.2 Concept drift

In order to test our algorithm on data displaying concept
drifts over time, we generated an artificial data with two
classes as follows. We first generated 60,000 random points
in a three-dimensional feature space. All three features have
values between 0 and 10 but only the first two features are
relevant. We then divided those points into four blocks with
different concepts. In each block, a data point belongs to
class 1if fi + fo < 0, where fi and f> represent the first two
features and 6 is a threshold value between the two classes.
‘We used threshold values 8, 9, 7, and 9.5 for the four data
blocks. We inserted about 10% class noise into each block of
data. Finally, we reserved 2,500 records from each block as
test sets for the different concepts. We summarize the class
distributions of our training and testing sets in Table 1.
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Train set Test set
Block Class 1 Class 2 Class 1 Class 2

points % | points % || points % | points %

Block 1 3,602 | 28.8 8,898 | 71.2 761 | 30.4 1,739 | 69.6
Block 2 || 4,473 | 35.8 | 8,027 | 64.2 891 | 35.6 | 1,609 | 64.4
Block 3 2,758 | 22.1 | 9,742 | 77.9 553 | 22.1 | 1,947 | 77.9
Block 4 4,995 | 40.0 7,505 | 60.0 1,031 | 41.2 1,469 | 58.8
Total || 15,828 | 31.7 | 34,172 | 68.3 || 3,236 | 32.4 | 6,764 | 67.6

Table 1: The class distributions of an artificial data demonstrating concept drift

Data with 3 Concept Drifts (500 points/tree)
50 T T T T T T

— - Train error
— — Testerror
45 — 1 Tree pruned

401 N

351 1

% Error

| |
0 10 20 30 40 50 60 70 80 90 100
Training Points (x 500)

Data with 3 Concept Drifts (1000 points/tree)
50 T T T T T T

—- Train error
— — Testerror
451 — 1 Tree pruned

401 B

|
0 5 10 15 20 25 30 35 40 45 50
Training Poaints (x 1@)

Figure 5: Error on simulated data with changing concept

Figure 5 shows the generalization results for a single tree
and for an ensemble (“Test error” in the figure legend). As
expected, when the target concept changes suddenly, both
techniques have a jump in error; in fact, the ensemble is
affected somewhat more dramatically. However, the dy-
namic nature of our method allows the ensemble accuracy
to recover very quickly. The trees that were trained on the
outdated concept are replaced, and the error returns very
quickly to its original level — in some cases, even lower. The
single decision tree, which is still using data points from the
old concept, recovers much more slowly, if at all.

The ensembles built with 500 points per tree adapted to
the new concept faster than those with 1000 points per tree.
While this behavior is a positive trait in this experiment,
in other situations the sensitivity to new data may be a
drawback. This relationship between the number of points
per tree and adaptability warrants further investigation.

The “Train error” curve in these figures is the observed
error of the ensemble on the next chunk of data. This error
closely tracks the testing error, providing an accurate on-
line estimate of generalization error. In an application to
streaming data, in which a separate test set is not available,
this estimate could be very valuable. To reduce noise in this
estimate, the observed error could be averaged over a sliding
window of test sets.

4. DISCUSSION AND CONCLUSIONS

‘We have presented an ensemble-based solution to the prob-
lem of large-scale or streaming classification. Our framework

facilitates any-time learning on problems of arbitrary size.
Our method is efficient, as accurate as a single classifier, and
adjusts quickly to changes in the target concept. It provides
a natural mechanism for estimating the generalization ac-
curacy of the model at any given stage of its construction.
Moreover, the method is easy to implement, and indepen-
dent of the underlying classifier.

As part of our evaluation, we return to the list of data
mining criteria mentioned in Section 1. Our approach was
designed to read blocks of data, rather than the entire data
set, at a time. In addition, since the ensembles are built in-
crementally, we have certainly satisfied the “any-time learn-
ing” criterion. The algorithm may be stopped at any point,
with the collection of classifiers built up to that point pro-
viding the “answer.” In fact, since near-maximum accuracy
is usually found fairly quickly (less that 10,000 points, in
most cases), an intermediate ensemble is likely to perform
well. By limiting the number of classifiers in the ensemble,
and reading only a few points at a time, the algorithm uses
only a nearly-constant amount of memory. This has a neg-
ligible effect on accuracy and allows the application of the
method to data sets of arbitrary size. Satisfaction of the
“single-pass” criterion is somewhat less obvious. Certainly
we are reading and processing each block of data only once,
but the individual points are re-examined several times in
the construction of the tree in the C4.5 algorithm. However,
since decision-tree algorithms like C4.5 are extremely fast for
moderately-sized data sets, this is not a serious drawback.

As stated previously, many large-scale prediction prob-



lems have a temporal component, and are subject to concept
drift over time. By quickly replacing trees that were trained
on the old concept, our method can recover from changes in
the target concept much faster than methods that use all of
the training points in a single model.

The next step of this research is to parallelize the algo-
rithm in the straightforward way and compare results, in
terms of both speedup and accuracy, to other meta-learning
methods [7, 13]. In the long term, we will focus on improving
the generalization accuracy of the method. While the accu-
racy appears to be about the same as a single classifier, our
use of ensemble classification suggests that we can do sig-
nificantly better. One direction is to examine the diversity
mechanism. We use different blocks of data for the various
classifiers to create classification diversity, which is neces-
sary for effective ensembles. We will experiment with other
approaches to promoting diversity, such as the use of dif-
ferent classification methods, limited data resampling, and
different methods of combining predictors. Another simple
variation is to keep a working set of high-quality classifiers
that is slightly larger than the ensemble size, and test all
the combinations of these on the evaluation set. This “best-
n-of-m” strategy moves us somewhat closer to a globally
optimal set, while limiting the additional computation.

In order to properly “optimize” an ensemble, it is im-
portant to have a clear understanding of the mechanisms
through which ensembles achieve their effectiveness. In our
related work in the direct optimization of ensembles via evo-
lutionary search, we are in the early stages of a data mining
task over the space of possible ensembles, varying ensemble
characteristics and allowing a group of ensembles to compete
for limited resources based on accuracy. Resulting insights
will be incorporated into the greedy optimization scheme
described here.
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