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Abstract

Classification performance can degrade if data
contain missing attribute values. Many methods
deal with missing information in a simple way,
such as replacing missing values with the global
or class-conditional mean/mode. We propose a
new iterative algorithm to effectively estimate
missing attribute values in both training data
and test data. The attributes are selected one
by one to be completed. For each attribute, the
unknown values are predicted using a decision
tree built using the other attributes from cases
with known values of the attribute. The training
set filled in this way is used to classify a tuning
set whose prediction error rate decides which at-
tribute is selected to be filled in the current iter-
ation. Prediction error rate of the tuning set is
recorded at each iteration to determine an opti-
mal stopping point, as filling all missing values
may lead to overfitting. The experiments show
that the method generally outperforms several
reasonable baseline methods and the ordered at-
tribute trees method proposed by Lobo and Nu-
mao.

1 Introduction

In classification, the goal is to construct a clas-
sifier from a training set, and improve the pre-
diction accuracy on the test set. However, many
real world data contain missing attribute values,

making it difficult to generate useful knowledge
from training data, and to provide accurate pre-
diction of test data as well. Therefore, many
strategies to deal with incomplete data have been
developed.

The simplest approach is to simply ignore in-
stances with any missing values. This reduces
the amount of information available, and there-
fore is not feasible in the case of high percentages
of missing values. Another common approach is
to replace missing values with the global or class-
conditional mean/mode, but it does not make
use of any dependencies of the missing attribute
with other attributes. Quinlan [5] found that di-
viding cases with missing values among subsets
when partitioning the training set in a decision
tree, and combining all possible outcomes on a
test case with missing values during classifica-
tion, gives better classification accuracy than the
other variations in decision tree learning. C4.5
[6] uses such a probabilistic approach to handle
missing values in both training and test data. To
further utilize the relations between attributes,
Shapiro’s method [8] constructs a decision tree
for each attribute by using the subset of training
data consisting of those instances whose values
of the attribute are known. Problems arise when
multiple missing values appear in an example.
The ordered attribute trees (OAT) method [3] es-
timates missing values by building a decision tree
for each attribute according to a specific order,
determined by mutual information [4] between
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the attributes and the class. The method orders
the attributes from low to high mutual informa-
tion. The decision tree of an attribute is built
using all the instances in the training set that
have known values of the attribute, and using
only the previously filled attributes.

A few methods have been designed to deal
with missing values in test data specifically, such
as dynamic path generation [9]. A decision tree
is built for a test case using only those at-
tributes whose values are present in the case.
When a missing attribute value is found in a
new case, the attribute is not used for branching
when classifying the case. Since a whole classi-
fier cannot be constructed beforehand, and in-
stead a path is dynamically generated for each
different test case, the method is computation-
ally expensive. Saar-Tsechansky and Provost [7]
address the problem of computation and stor-
age expenses using hybrid reduced-model ap-
proaches. [2] proposes a probabilistic attribute

trees approach, in which each attribute is pre-
dicted with a probability distribution using all
of its dependent attributes. It solves the major
problem of OAT, which is not taking into ac-
count all the dependencies between attributes,
because they are built in an ordered manner.

The method proposed here handles missing
values in both the induction phase and the pre-
diction phase effectively. We aim at using the de-
pendencies between attributes to predict missing
data. Since decision trees are designed to select
the most important attributes when determin-
ing the value of a target attribute, in this paper,
we apply decision trees to predicting missing val-
ues of a target attribute using all the other at-
tributes. An ordering for filling attributes is de-
termined based on the predictive accuracy on a
tuning set for a new tree constructed using the
newly-filled attribute. By using tuning accuracy,
we directly evaluate the predictive value of filling
the attribute, which combines its importance in
predicting the class (as in OAT) with our abil-
ity to correctly estimate its missing values. As
opposed to OAT, in which the ordering is de-
termined in advance, our method dynamically
decides the ordering once one attribute is filled.
We compare our method, termed Dynamically-

Ordered Attribute Trees (DOAT), to OAT and
several reasonable baseline methods. The ex-
periments are conducted on different types of
datasets with only nominal attributes.

2 Estimating Missing Values in

Training Data

In our approach, missing attribute values are es-
timated iteration by iteration. At each iteration,
one attribute is chosen, and all missing values of
that attribute are filled. For each unselected at-
tribute, an attribute tree ATi is constructed by
using i as the target and all other attributes as
predictors. We choose not to include the (origi-
nal) class attribute as a predictor, so that we can
use the same model when filling values in the test
data. Therefore, the information gained during
the model construction matches the information
available in testing, and the evaluation of test
performance is more reliable.

A tuning set is set aside to estimate the classi-
fication performance. A classifier Ci having the
original class attribute as the target is induced
from the training data that has attribute i filled
by its attribute tree ATi. The attribute k whose
corresponding classifier Ck produces the lowest
prediction error rate on the tuning data is se-
lected at this iteration. Accordingly, the missing
values in the selected attribute k are filled by the
corresponding attribute tree ATk. In this man-
ner, the ordering is determined dynamically after
one attribute is selected to be estimated, making
our method more flexible than the static order-
ing in OAT. Previously-induced attribute values
are used for the new predictors, and also updated
as new attributes are filled. Our experiments in-
dicated that converging the previously-filled at-
tributes gives better performance than with no
convergence.

However, it is not always the case that filling
all the missing values leads to the best perfor-
mance, as can be shown from a number of ex-
periments. To address this problem, we track
the tuning error of the selected classifier Ck at
each iteration. After all attributes are filled, we
select the classifier that produces the lowest tun-
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ing error rate as the final classifier.

Unlike OAT, which fills the next attribute us-
ing only the already-filled attributes, our method
uses all the other attributes when estimating
missing values in an attribute. Doubtlessly, this
may add noise due to the existence of missing
values in those attributes that have not been
filled. On the other hand, we are utilizing the
maximum amount of information derivable from
the data, thanks to the known values in the other
attributes, which are useful despite those missing
values. In addition, to reduce the interference of
missing values in the other attributes during the
construction of decision tree for the target at-
tribute, missing values are replaced by modes.
Likewise, the final chosen classifier is induced
from the training data with some attributes filled
and the others replaced by modes.

3 Estimating Missing Values in

Test Data

It often happens in real data that both train-
ing data and test data contain missing values.
Our method can work with both cases. Miss-
ing values in test data will also cause the class
prediction to degrade even if training data are
filled. Hence, before classifying test data, we es-
timate missing values in a similar manner as in
training data. The selected attribute at the cur-
rent iteration is regarded as the target attribute,
and the attribute tree used for training data is
again applied on test data. The ordering of fill-
ing attributes is still maintained when handling
test data. If multiple missing values exist in a
test case, we replace all of them (except for the
current target) with their modes before the pre-
diction of the target.

Furthermore, due to the fact that the final
classifier in the training phase may be induced
from the middle of the process where the train-
ing data are not completely filled, we do not use
predictive trees for those attributes that have not
been filled in the training phase. Attribute trees
are built to estimate missing values in test data
only for those attributes that have been filled in
training data. As in the last phase, the missing

values in the unfilled attributes are replaced by
modes.

4 Experiments and Results

We compared four missing data imputation
methods on nine datasets. Different percentages
of missing values were artificially introduced into
the datasets. To fairly compare the four meth-
ods, all the chosen datasets have only nominal
attributes, because of the limitation of decision
tree to only nominal values. Methods’ perfor-
mances are evaluated based on the error rate of
class prediction on different datasets. Both at-
tribute and class trees are built using the Weka
[10] implementation of C4.5.

4.1 Experimental Setup

The nine datasets were selected from the UCI
Machine Learning repository [1] and are sum-
marized in Table 1.

Table 1: Summary of Datasets

Datasets Instances Attributes Classes

Breast Cancer 699 9 2
Car Evaluation 1728 6 4
Chess 28056 6 18
Lymphography 148 19 4
Mushroom 8124 22 2
Soybean 307 35 19
SPECT 267 22 2
Tic-Tac-Toe 958 10 2
Voting 435 17 2

The distribution of missing data in our ex-
periments was missing completely at random
(MCAR). Different quantities, i.e. 10%, 20%,
30%, 40%, 50% and 60% of data were randomly
turned into missing values, in order to observe
the methods’ performances under low missing
rate and high missing rate. Each attribute, ex-
cept for the class attribute which contains no
missing, has the same amount of missing data.

The four imputation methods are listed below.
All the methods are able to deal with missing
data in both training data and test data.
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• Mode: replace all missing values in train-
ing data and test data with the mode of the
attribute in the training data, and then ap-
ply the decision tree method to the filled
datasets.

• Attribute Trees (AT): construct a decision
tree for each attribute to estimate missing
data.

• Ordered Attribute Trees (OAT): Lobo’s
method.

• Dynamically-Ordered Attribute Trees
(DOAT): our method.

4.2 Experimental Results

For each of the methods, the dataset was tested
through five runs of 10-fold cross-validation.
From the training data of every fold, 10% were
extracted to be tuning data. We computed the
average error rate of classification prediction
over the five runs. The comparisons of methods
are shown from the four representative datasets
in Figures 1 to 4.
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Figure 1: Mushroom
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Figure 2: Voting
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Figure 3: Car Evaluation
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Figure 4: Tic-Tac-Toe

Figures 1 and 2 show two cases where all the
attribute tree methods are significantly better
than the mode method. DOAT seems to per-
form as well as OAT, but neither is consistently
better. Moreover, DOAT outperforms AT. In
contrast, Figures 3 and 4 show cases where the
mode method is almost as good as DOAT, while
AT and OAT are significantly worse. In this type
of situation, DOAT beats the mode method in
only a few tests.

From the results in the first cases, we con-
clude that the superior performance of the at-
tribute trees methods is due to the relatively high
correlation of the attributes to one another, al-
lowing the attribute trees to perform well and
thereby improve generalization. In addition, we
notice that the number of attributes are rela-
tively larger in these datasets. This reinforces
the effect of taking advantage of relationships
between attributes. On the contrary, in the sec-
ond group, the correlation between attributes in
those datasets is lower. Therefore, utilizing the
dependencies between attributes to estimate the
missing values does not have much effect. In fact,
this feature inversely affects the performance in
AT and OAT, as they are even worse than the
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mode method. Further, the number of attributes
is smaller, leaving little space for the attribute
trees methods to improve performance.

We compared DOAT with each of the other
methods over all the nine datasets under all the
missing rates. Results are shown in Table 2.
Bold entries in the table are significantly worse
than DOAT, and underlined entries are signif-
icantly better (2-sided pairwise t-test at 5%).
The results can be summarized as follows:

• Mode: DOAT has 25 wins, 28 ties, and 1
loss.

• AT: DOAT has 23 wins, 28 ties, and 3 losses.

• OAT: DOAT has 19 wins, 30 ties, and 5
losses.

In general, DOAT outperforms all the three
methods. Also, by looking at the comparisons of
AT with OAT and DOAT, we may conclude that
the attribute trees method with order is more ef-
fective than that without order, i.e., the one of
filling all attributes at a single iteration.

DOAT works consistently well in different do-
mains, although it has only a small advantage
over the winners under the two different con-
texts. The consistent effectiveness may be be-
cause DOAT not only utilizes the correlation be-
tween attributes for estimating missing values,
but also intends to select the best attribute at
each iteration by evaluating the performance of
a tuning set which simulates the result of test
data. The ordering is more reliable in that the
approach takes every aspect into account.

5 Conclusions and Future

Work

An approach dealing with missing attribute val-
ues in both training data and test data has been
proposed. Experiments have been done by com-
paring it with the basic method that uses mode
to fill missing values, an attribute trees method
that builds a decision tree for each attribute,
and a previously proposed ordered attribute trees

method. We come up with the observation that

Table 2: Summary of Results

Dataset Mode AT OAT DOAT

Breast 10% 6.9 6.67 6.52 6.29
20% 7.9 7.1 6.58 6.41
30% 10.5 8.61 7.9 8.61
40% 9.7 7.87 8.04 9.36
50% 12.39 9.81 9.61 10.39
60% 11.07 9.61 9.36 10.07

Car 10% 17.31 17.99 17.88 17.56
20% 23.48 24.71 24.2 23.83
30% 25.23 26.9 26.66 25.36
40% 29.33 29.54 29.57 28.63
50% 29.84 30.12 29.94 29.95
60% 30.01 30.05 29.98 30.09

Chess 10% 57.58 58.81 58.54 57.37
20% 65.18 66.78 66.81 65.39
30% 70.07 71.99 71.46 69.92
40% 73.95 75.4 75.02 73.99
50% 76.6 77.94 77.68 76.63
60% 78.25 78.78 78.87 78.22

Lymphography 10% 23.65 23.38 22.3 23.78
20% 22.16 25.14 24.59 23.51
30% 26.89 25.14 24.73 25.27
40% 41.62 32.97 30.41 31.49
50% 35 32.43 30.14 32.43
60% 37.16 37.7 39.73 37.57

Mushroom 10% 0.54 0.12 0.052 0.027
20% 1.02 0.24 0.18 0.074
30% 1.9 0.71 0.45 0.27
40% 2.92 1.37 0.97 0.74
50% 3.8 2.35 1.69 1.54
60% 6.32 3.8 3.32 2.87

Soybean 10% 17.39 13.03 14.07 13.88
20% 27.04 16.42 16.55 18.7
30% 38.11 24.76 23 23.06
40% 39.8 31.47 31.6 29.9
50% 50.49 39.67 37.92 40.26
60% 54.2 49.84 47.56 47.88

SPECT 10% 20.22 22.17 21.95 20.3
20% 20.6 21.2 22.1 21.5
30% 17.38 18.88 20.15 17.9
40% 30.79 31.46 34.01 29.96
50% 22.02 20.9 22.62 22.1
60% 37.53 36.7 36.48 36.1

Tic-Tac-Toe 10% 20.61 21.34 20.48 20.58
20% 23.95 26.16 25.2 24.72
30% 27.81 28.68 29.94 28.02
40% 31.36 32.36 33.15 31.29
50% 32.82 33.55 33.82 32.05
60% 35.45 35.8 35.2 34.86

Voting 10% 9.47 4.78 5.56 5.15
20% 12.87 7.59 6.85 6.67
30% 9.01 7.95 5.79 7.08
40% 11.68 7.68 6.57 6.53
50% 14.25 11.95 10.07 11.49
60% 17.01 14.9 13.61 14.07
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our method performs consistently better in dif-
ferent domains of datasets.

The decision tree is the only learning scheme
that is applied in the presentation of the method
and in the tests, because of its nature to capture
the relations between attributes. Further exper-
imentation on data which contain both nominal
and numeric attributes using other learners is ex-
pected. Our approach is mainly focusing on the
estimation of missing values in training data, and
the missing values in test data are simply pre-
dicted by the induced training data. We are in-
terested in combining our approach in induction
phase and other approaches in prediction phase,
such as dynamic path generation, so as to effec-
tively handle missing values in training data and
test data respectively.

Finally, we intend to incorporate this approach
into the design of active learning method for
choosing missing values to be manually filled. If
attribute values have an associated cost, then an
important part of estimating the utility of ac-
quiring a missing value would be an estimate of
how well the value can be filled automatically.
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