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Abstract Finding the most interesting correlations among

items is essential for problems in many commercial, med-

ical, and scientific domains. Our previous work on the

maximal fully-correlated itemset (MFCI) framework can

rule out the itemsets with irrelevant items and its down-

ward-closed property helps to achieve good computational

performance. However, to calculate the desired MFCIs in

large databases, there are still two computational issues.

First, unlike finding maximal frequent itemsets which can

start the pruning from 1-itemsets, finding MFCIs must start

the pruning from 2-itemsets. When the number of items in a

given dataset is large and the support of all the pairs cannot

be loaded into the memory, the IO cost (Oðn2Þ) for calcu-

lating correlation of all the pairs can be very high. Second,

users usually need to try different correlation thresholds for

different desirable MFCIs. Therefore, the cost of processing

the Apriori procedure each time for a different correlation

threshold is also very high. Consequently, we proposed two

techniques to solve these problems. First, we identify the

correlation upper bound for any good correlation measure to

avoid unnecessary IO query for the support of pairs, and

make use of their common monotone property to prune

many pairs even without computing their correlation upper

bounds. In addition, we build an enumeration tree to save

the fully-correlated value for all the MFCIs under a given

initial correlation threshold. We can either efficiently

retrieve the desired MFCIs for any given threshold above

the initial threshold or incrementally grow the tree if the

given threshold is below the initial threshold. Experimental

results show that our algorithm can be an order of magni-

tude faster than the original MFCI algorithm.

Keywords Correlation � Maximal fully-correlated

itemset � Apriori

1 Introduction and related work

The analysis of relationships between items is fundamental

in many data mining problems [9, 16, 23]. Most of the

published work with regard to correlation is related to

finding correlated pairs [6, 12, 20, 21]. Related work with

association rules [3, 4, 18] is a special case of correlated

pairs since each rule has a left- and right-hand side. How-

ever, there are some applications in which we are specifi-

cally interested in correlated itemsets rather than correlated

pairs. For example, we are interested in finding sets of cor-

related stocks in a market, or sets of correlated gene

sequences in a microarray experiment. The first related

technique is frequent itemset mining [17, 22]. By using

support, the search is fast. However, co-occurrence is related

to two factors: the correlation and the single item support

within the itemset. In other words, co-occurrence is related

but not equal to correlation. The second technique is to find

the top-k correlated itemsets. Tan [20] compared 21 differ-

ent measures for correlation. Only four of the 21 measures

can be used to measure the correlation within a given k-

itemset. Dunning [11] introduced a more statistically reli-

able measure, likelihood ratio, which outperforms other

correlation measures. It measures the overall correlation

within a k-itemset, but cannot identify itemsets with irrele-

vant items. Jermaine [15] extended Dunning’s work and
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examined the computational issue of probability ratio and

likelihood ratio. No existing correlation measures satisfying

the three primary correlation properties [7, 10] have the

downward-closed property to facilitate the search. To find

the top-k correlated itemsets is a NP-hard problem. To sum

up, frequent itemset mining is efficient, but not effective;

top-k correlated itemset mining is effective, but not efficient.

In order to solve the problems, others proposed efficient

correlation measure like all-confidence [18]. All-confidence

is as fast as support; however, the correlation is still mea-

sured in a sub-optimal way [7]. Requiring the correlation

measure to be both effective and efficient is too demanding.

Instead of proposing another efficient correlation measure,

we proposed the framework of maximal fully-correlated

itemsets [7] can not only decouple the correlation measure

from the need for efficient search, but also rule out the

itemsets with irrelevant items. With the MFCI framework,

we only need to focus on effectiveness side when selecting

correlation measures. However, to calculate the desired

MFCIs, there are still two computational issues. First, unlike

finding maximal frequent itemsets which can start the

pruning from 1-itemsets, finding MFCIs must start the

pruning from 2-itemsets. When the number of items in a

given dataset is large and the support of all the pairs cannot

be loaded into the memory, the IO cost (Oðn2Þ) for calcu-

lating correlation of all the pairs can be high. Second, users

usually need to try different correlation thresholds for dif-

ferent desirable MFCIs. For example, when we set up the

threshold 15,000 by using likelihood ratio on the netflix

dataset, we successfully retrieve the series of ‘‘Lord of the

Rings 1, 2, and 3’’ in one MFCI; however, we only retrieve

several pairs on the TV show ‘‘Sex and the City’’ like {1, 2},

{2, 3}, {3, 4}, {4, 5}, {5, 6}. In order to get the whole series

of ‘‘Sex and the City 1, 2, 3, 4, 5, 6’’ in one MFCI, we have to

lower the threshold to 8,000. However, the cost of pro-

cessing the Apriori procedure each time for a different

correlation threshold is very high.

The remainder of this paper is organized as follows.

Section 2 introduces basic concepts of correlation measures

and MFCIs. As the search for MFCIs must start the pruning

from pairs instead of single items, we briefly introduce our

related published pair search speeding-up techniques [8] in

Sect. 3. Section 4 introduces an enumeration tree structure

to keep the fully-correlated value (FCV) for all the MFCIs

of the previous search which can speed up the next MFCI

search. The experiment results are shown in Sect. 5. Finally,

we conclude the paper and suggest future directions.

2 Basic notions

In this section, some basic notions of our previous work on

MFCI are introduced. It helps the understanding of how to

improve the performance of the original MFCI algorithm.

In addition, the math symbols used throughout this paper

are summarized in Table 1.

2.1 Correlation measure properties

To find high-correlation itemsets, we should find a rea-

sonable correlation measure first. Since it is impossible to

compare against every possible measure [12, 21], in this

paper we use the following three commonly accepted cri-

teria to generalize the correlation measure, such as v2-

statistic, probability ratio, leverage, and likelihood ratio.

Given an itemset S ¼ fI1; I2; . . .; Img, a correlation

measure M must satisfy the following three properties [19]:

P1: M is equal to a certain constant number C when all

the items in the itemset are statistically independent.

P2: M monotonically increases with the increase of PðSÞ
when all the PðIiÞ remain the same.

P3: M monotonically decreases with the increase of any

PðIiÞ when the remaining PðIkÞ and PðSÞ remain

unchanged.

In Sect. 3, we will make use of the above 3 properties to

facilitate our correlated pair search. Without losing gen-

erality, we use the best correlation measure [7], likelihood

ratio, which measures the ratio of the likelihood of k out of

n transaction containing the itemset S when the single trial

probability is the true probability, tp ¼ PðSÞ, to that when

the single trial probability is the expected probability,

ep ¼ PðI1Þ � PðI2Þ � . . . � PðImÞ, if all the items in S are

independent from each other to demonstrate our search in

the rest of the paper.

2.2 Maximal fully-correlated itemsets

To the best of our knowledge, no correlation measure alone

can either detect whether a given itemset contains items

that are independent from the other items or have the

Table 1 Math symbols

Name Description

S An itemset

Ik The k-th item in a given itemset

M The function to measure the correlation of a given itemset

PðSÞ The support of the itemset S

tp The probability of a randomly selected transaction containing S

ep The expected probability of a randomly selected transaction

containing S under the assumption of independence

PðIÞ The probability of a randomly selected transaction containing I

qðSÞ The fully-correlated value of a given itemset defined in Sect. 4

T An enumeration tree
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downward-closed property. To achieve that, we use fully-

correlated itemsets defined as follows.

Definition 1 Given an itemset S and a correlation mea-

sure, if the correlation value of any subset containing no

less than two items of S is higher than a given threshold h,

i.e., any subset of S is closely correlated with all other

subsets and no irrelevant items can be removed, this

itemset S is a fully-correlated itemset.

This definition has three very important properties. First,

it can be incorporated with any correlation measure. Sec-

ond, it helps to rule out an itemset with independent items.

For example in Table 2, B is correlated with C, and A is

independent from B and C. Suppose we use the likelihood

ratio and set the correlation threshold to be 2. The likelihood

ratio of the set fA;B;Cg is 8.88 which is higher than the

threshold. But the likelihood ratio of its subset fA;Bgwhich

is 0 doesn’t exceed the threshold. According to our defini-

tion, the set fA;B;Cg is not a fully-correlated itemset. The

fully-correlated itemset should be fB;Cg whose likelihood

ratio is 17.93. Third, there is a desirable downward closure

property which can help us to prune unsatisfied itemsets

quickly like Apriori [1]. Given a fully-correlated itemset S,

if there is no other item that can be added to generate a new

fully-correlated itemset, then S is a maximal fully-corre-

lated itemset. MFCI shows more compact information.

3 Correlated pair search

Since finding MFCIs must start the pruning from

2-itemsets instead of 1-itemsets, a good correlated pair

search algorithm can speed up the generation of MFCIs a

lot. As we will make use of our related published pair

search speeding-up techniques [8] here, we briefly intro-

duce the related concept. More details can be found in the

related paper.

3.1 A correlation upper bound search

Theorem 1 Given any pair fIa; Ibg, the support value

PðIaÞ for item Ia, and the support value PðIbÞ for item Ib,

the correlation upper bound, i.e. the highest possible cor-

relation value, of the pair fIa; Ibg is the correlation value

for fIa; Ibg when PðIa \ IbÞ ¼ minfPðIaÞ;PðIbÞg.

The calculation of correlation upper bound for pairs only

needs the support of each item which can be saved in the

memory even for large datasets; however, the calculation

of correlation for pairs needs the support of pairs whose IO

cost is very expensive. Given a 2-itemset fIa; Ibg, if its

correlation upper bound is lower than the correlation

threshold we specify, there is no need to retrieve the sup-

port of this 2-itemset fIa; Ibg, because the correlation value

for this pair is definitely lower than the threshold no matter

what the support is. If we only retrieve the support of a

given pair in order to calculate its correlation when its

upper bound is greater than the threshold, we will save a lot

of unnecessary IO cost when the threshold is high.

3.2 1-Dimensional search

The upper bound search can save a lot of unnecessary IO

cost; however, it needs to calculate the upper bound of all

the possible n � ðn� 1Þ=2 pairs which is still computa-

tionally expensive. The 1-Dimensional search which can

save a lot of unnecessary upper bound checkings for very

high thresholds. In order to facilitate the search, we sort the

items according to their supports in an increasing order.

Theorem 2 Given a user-specified threshold h, and the

item list fI1; I2; . . .; Img according to their supports in an

increasing order, the correlation upper bound of fIa; Icg is

less than h if the correlation upper bound of fIa; Ibg is less

than h and PðIaÞ�PðIbÞ�PðIcÞ.

We specify the reference item A in the first loop and

start a search within each branch in the second loop. The

reference item A is fixed in each branch and it has the

minimum support value due to the way we construct the

branch. Items in each branch are also sorted based on their

support in an increasing order. By Theorem 2, the upper

bound of the correlation of fA;Bg monotonically decreases

with the increase of the support of item B. Therefore, if we

find the first item B, the turning point, which results in an

upper bound of the correlation is less than the user-speci-

fied threshold, we can stop the search for the current

branch. If the upper bound is greater than the user-specified

threshold, we calculate the exact correlation and check

whether this pair is really satisfied.

3.3 2-Dimensional search

If we can save the correlation value of pairs whose corre-

lation is greater than h in the database, we can get the

satisfied pairs for any threshold higher than h by a simple

query. Ideally, saving all the pair correlation values is the

most flexible way to users by choosing h ¼ �1; however,

we can only choose the h under which time allows us to

finish the search. Before the actual search, we can use the

1-D search to calculate how many pairs’ support needs to

be retrieved for a given threshold to conduct an estimation.

Table 2 An independent case C not C

B not B B not B

A 25 25 25 425

not A 25 25 25 425
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However, when the threshold is very low, the 1-D search

might still calculate the upper bound of all the possible

n � ðn� 1Þ=2 pairs. In order to get faster estimation, we use

the 2-D search for the Pearson Correlation measure. But we

will use different search sequences for three different types

of correlation measures.

Given three items Ia, Ib, and Ic with PðIaÞ�PðIbÞ�
PðIcÞ, the correlation measure M is

• Type 1 if CorrupperðIa \ IbÞ�CorrupperðIa \ IcÞ.
• Type 2 if CorrupperðIa \ IbÞ�CorrupperðIa \ IcÞ.
• Type 3 if CorrupperðIa \ IbÞ ¼ CorrupperðIa \ IcÞ.
The simplified v2-statistic, probability ratio, leverage, and

likelihood ratio are all the type 1 correlation measures.

However, we can coin the type 2 correlation measure

which satisfies all the three properties like

CorrelationType2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tp� ep
p

ep
;when tp [ ep

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ep� tp
p

ep
;when tp\ep

8

>

>

<

>

>

:

and the

type 3 correlation measure like CorrelationType3 ¼ tp�ep
ep

.

The 1-D search algorithm starts upper bound computing

from the beginning of each branch. The key difference

between 1-D search and 2-D search algorithm is that the

2-D search algorithm records the turning point in the pre-

vious branch and starts the computing from the recorded

point instead of the beginning of the current branch. If we

sort items according to their support values and calculate

the correlation value for each pair, Tables 3, 4, and 5 show

the typical pattern of different types of correlation mea-

sures. For different types of correlation measures, we use

different search sequences.

For the type 1 correlation measures, the upper-right

corner has the lowest upper bound value. The upper bound

value decreases from left to right and from bottom to top.

We start the search from the upper-left corner. If the upper

bound of the current cell is above the threshold h, we will

check the cell right to it. At the same time, we can conclude

that the upper bound of the cell under the current cell is

also above the threshold h because their upper bound is no

less than that of the current cell. If the upper bound of the

current cell is below the threshold h, we will check the cell

under it instead of the cell right to it. At the same time, we

can conclude that all the upper bounds of the cells right to

the current cell is lower than the threshold h because their

upper bound is no more than that of the current cell. Take

the threshold 3.5 in the type 1 table for example, the search

sequence is (A, B), (A, C), (A, D), (B, D), (B, E), (C, E),

(C, F), (D, F). The upper bound of any cell below this

boundary is greater than the threshold h.

For the type 2 correlation measure, the lower-right

corner has the lowest upper bound value. The upper bound

value decreases from left to right and from top to bottom.

We start the search from the upper-right corner instead of

the upper-left corner in type 1. If the upper bound of the

current cell is greater than the threshold, then we will check

the cell below the current cell. At the same time, we can

conclude that the upper bound of the cell left of the current

cell is also above the threshold h because their upper bound

is no less than that of the current cell. If the upper bound of

the current cell is less than the threshold, we will check the

cell left of the current cell. At the same time, we can

conclude that all the correlation upper bounds under the

current cell is lower than the threshold h because their

correlation upper bound is no more than that of the current

cell. Take the threshold 4.5 in the type 2 table for example,

the search sequence is (A, F), (B, F), (B, E), (C, E), (C, D).

The upper bound of any cell above this boundary is greater

than the threshold h.

For the type 3 correlation measure, the rightmost column

has the lowest upper bound value. We only need to search

the first branch. If the current column is above the threshold,

Table 3 Type 1 correlation upper bound pattern

A B C D E F

A 5 4 3 2 1

B 5 4 3 2

C 5 4 3

D 5 4

E 5

F

Table 4 Type 2 correlation upper bound pattern

A B C D E F

A 9 8 7 6 5

B 7 6 5 4

C 5 4 3

D 3 2

E 1

F

Table 5 Type 3 correlation upper bound pattern

A B C D E F

A 5 4 3 2 1

B 4 3 2 1

C 3 2 1

D 2 1

E 1

F
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we continue the search of the right-side column. If the

current column is below the threshold, we stop the search.

By using the 2-D search, we can easily calculate how many

support of pairs need to be retrieved for any given threshold h
and the computational complexity is OðnÞ. According to the

IO speed of retrieving the support of pairs and how much time

we are allowed for the search, we can evaluate whether we

can finish the search for a given threshold.

3.4 The current pair generation from the previous

search

Given the correlation threshold h\h1, the set of satisfied

pairs under the threshold h1 is the subset of the set of sat-

isfied pairs under the threshold h. Therefore, if we can save

the correlation value of pairs whose correlation is greater

than h in the database, we can get the satisfied pairs for any

threshold higher than h by a simple query. However, if we

only save the correlation value of pairs whose correlation is

greater than h and we want to find the satisfied pairs for the

threshold h1 lower than h, we have to calculate all the pairs

whose upper bound is greater than h1. Instead, if we save the

correlation value of all the pairs whose correlation upper

bound is greater than h since we have already calculated

those, we only need to calculate the pairs whose upper

bound is between h and h1 and then retrieve the pairs whose

correlation value is greater than h1 in the database. If we use

2-D search algorithm to find the turning points of each

branch for different thresholds h and h1, the points between

the two different turning points of each branch are the pairs

whose upper bound is between h and h1.

4 Enumeration tree structure

When going through the Apriori procedure, we will discard

the ðk � 1Þ-level information after we generate the k-level

information. However, if we generate a fully-correlated k-

itemset given a correlation threshold h and keep that

information, we can directly get this fully-correlated k-

itemset given any correlation threshold lower than h. To

achieve that, we build an enumeration tree to save the

fully-correlated value for all the MFCIs under a given

initial correlation threshold. We can either efficiently

retrieve the desired MFCIs for any given threshold above

the initial threshold or incrementally grow the tree if the

given threshold is below the initial threshold.

4.1 Fully-correlated value

Definition 2 Given an itemset S, the fully-correlated

value qðSÞ for this itemset is the minimal correlation value

of all its subsets.

Given an itemset S and the correlation threshold h, if the

current correlation threshold h� qðSÞ, the current itemset

is a fully-correlated itemset because the correlation of any

subset is no less than h, i.e., any subset is highly correlated.

If the current correlation threshold h is greater than qðSÞ,
the current itemset is not a fully-correlated itemset because

the correlation of at least one subset is lower than h, i.e., at

least one subset is uncorrelated.

Theorem 3 Given a k-itemset S ( k� 3 ), the fully-

correlated value qðSÞ for this itemset is the minimal value

a among its correlation value and the fully-correlated

values for all its ðk � 1Þ-subsets.

Proof For any true subset SS of the current k-itemset S,

SS must be the subset of at least one of all the ðk � 1Þ-
subset of the current itemset S.

Among all the subsets of S, either the S itself or one true

subset SS has the minimal correlation value b.

(i) If the S itself has the minimal correlation value b,

then the correlation of any true subset SS is no less

than b. According to the definition of fully-corre-

lated values, qðSÞ ¼ b and qððk � 1Þ � SubsetiÞ�
b. According to the definition of a in this theorem,

a ¼ b. Therefore, qðSÞ ¼ a.

(ii) If one true subset SS has the minimal correlation

value b, then the correlation of S and any true

subset is no less than b. According to the definition

of fully-correlated values, qðSÞ ¼ b and

qððk � 1Þ � SubsetiÞ� b. Since SS must be the

subset of at least one of all the ðk � 1Þ-subset of the

current itemset S, qððk � 1Þ � SubsetjÞ ¼ b at least

for one j. According to the definition of a in this

theorem, a ¼ b. Therefore, qðSÞ ¼ a. h

By making use of the above theorems, we can calculate

the fully-correlated value for each itemset by Algorithm 1.

Algorithm 1 Find the Fully-Correlated Value
Main: CalculateFullyCorrelatedValue()

ρ(pairs) = CalCorrelation(pairs);

for k = 3; k <= n; k + + do

for each possible k-itemset C do

for i = 1; i <= k; i + + do

θi is the fully-correlated value of the i-th (k-1)-subset of C

end for

ρ(C) = min{CalCorrelation(C), θ1, θ2, ..., θk}
end for

end for

An enumeration tree with five items to save all the

possible combination is shown in Fig. 1. In this tree, those

itemsets are combined in a node which have the same
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prefix with regard to a fixed order of the items. With this

structure, the itemsets contained in a node of the tree can be

easily constructed in the following way: Take all the items

with which the edges leading to the node are labeled and

add an item that succeeds after the last edge label on the

path in the fixed order of the items. In this way we only

need one item to distinguish the itemsets after a particular

node. In each node, we save the fully-correlated value for

each itemset corresponding to it. Due to the way we con-

struct this tree, we can conclude that the fully-correlated

value saved in the current node is no less than the fully-

correlated value saved in the any child node of the current

node. By using the above property, given a threshold, if the

fully-correlated value of the current node is less than the

threshold, the fully-correlated value of any node rooted

from the current node is also lower than the threshold.

Then we can easily travel this tree to retrieve all the pos-

sible fully-correlated itemsets given a threshold.

4.2 MFCI generation from the enumeration tree

structure

Since finding the maximal fully-correlated itemsets from

the enumeration tree saving fully-correlated value infor-

mation is exactly the same as finding the maximal frequent

itemsets from the enumeration tree saving support infor-

mation, we can apply any technique of searching maximal

frequent itemsets to MFCI search, such as MAFIA [5],

Max-Miner [2], and GenMax [13]. Here, we use MAFIA to

find the MFCIs given a threshold.

4.3 The current enumeration tree generation

from the previous enumeration tree

Theorem 4 Given an threshold h, we can save all the

fully-correlated itemsets in this enumeration tree structure.

Let T1 be the enumeration tree for the threshold h1, T2 is

the enumeration tree for the threshold h2, and h1 [ h2.

Then T1 is the subtree of T2.

Proof Given any node in tree T1, the fully-correlated

value of the corresponding itemset is greater than h1

according to the definition. Since h1 [ h2, the fully-cor-

related value of the corresponding itemset S is also greater

than h2. In other words, this node also exists in tree T2.

Then T1 is the subtree of T2. h

The above property means the fully-correlated itemsets

under a high threshold has already been contained by the

fully-correlated itemsets under a low threshold. Therefore,

we can modify the original MFCI algorithm as follows.

Given the threshold h, instead of only getting the fully-

correlated itemsets for each level, we keep all the candi-

dates generated from lower level and their fully-correlated

values in the enumeration tree T . Although we keep all the

candidates generated from low level, we only use the fully-

correlated itemsets instead of the candidates in the current

level to generate the next level candidates. For any

threshold h1 greater than h, we can easily get the corre-

sponding fully-correlated itemsets and the corresponding

enumeration tree T1 by traveling the current enumeration

tree T . For the threshold h2 less than h, the current enu-

meration tree T is the subtree of the target enumeration tree

T2. In this case, we only need to increment the current

enumeration tree T instead of building the target enumer-

ation tree T2 from the beginning. To generate k-itemset

candidates from fully-correlated ðk � 1Þ-itemsets, the

candidates generated by the fully-correlated itemsets

whose fully-correlated value is greater than h have already

been saved in the enumeration tree T . In order to generate

the remaining candidates, we generate the candidates

involving at least one ðk � 1Þ-itemset whose fully-corre-

lated value is between h and h2 to increment the enumer-

ation tree T . In this way, we can generate the target

enumeration tree T2 and avoid the repeat calculation which

has already been finished when building the enumeration

tree T .

5 User interaction procedure

The best way to get the desired MFCIs is to select a rela-

tively low threshold h to build a corresponding enumera-

tion tree to keep the fully-correlated values first. Then for

any threshold above h, we can easily generate the corre-

sponding MFCIs from this enumeration tree. The core

problem is how to determine this relative low threshold h.

If the threshold is too high, there might be some MFCIs

which we are interested in but are not contained in the

enumeration tree. We have to do extra work to increment

the current enumeration tree. If the threshold is too low, we

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d

Fig. 1 An enumeration tree for five items
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will keep much unnecessary information and might not

have enough memory to generate or save the enumeration

tree. Therefore, several proper user interaction procedures

are needed in order to select the proper threshold.

We split the enumeration tree construction into two

steps. First, we keep relevant pair correlation information

for a relatively low threshold h. By doing that, we can get

the satisfied pairs for any threshold higher than h by a

simple query. Second, we construct the enumeration tree

by trying different thresholds. Due to the 2-D search

algorithm, we can easily count the number of pair candi-

dates whose correlation upper bound is above a tentative

threshold. Since we need to retrieve the support of all the

pair candidates to calculate their correlation, we can esti-

mate the time we will spend in the first step by the count

for any given threshold. We will choose the threshold

under which the computational time is affordable to us. For

the second step, it is hard to estimate the time we will

spend for any given threshold. It is related to the number of

satisfied pairs and the characteristic of the dataset. The best

way to finish the second step is to choose a relative high

threshold first, and then gradually grow the enumeration

tree by lowering the threshold until we run out of time to

update the tree for a threshold.

6 Experiments

In this section, we describe the performance study to

evaluate our methods. The algorithm was run on two real

life datasets. The first is the Netflix1 data set which contains

17,770 movies and 480,000 transactions. The second is the

retail data set from FIMI repository 2containing 16,470

items and 88,000 transactions. Netflix contains many long

correlation patterns because of movies in the same series

and TV shows of many episodes; the retail data set contains

fewer correlation patterns because those highly correlated

items might have already been produced by manufactures

as a package. The number of correlated pairs and MFCIs

under different thresholds for these two data sets is shown

in Fig. 2.

We implemented our algorithms using Java 7 on a Dell

workstation with 2.4 GHz Dual CPU and 4G memory

running on the Windows 7 operating system. The perfor-

mance improvement comes from the improved pair search

and the enumeration tree structure. When searching MFCI,

we use them together. However, we only check the

improvement from each technique independently in the

following since the search on the enumeration tree struc-

ture is independent from the improved pair search. The

improvement from using them together can be easily

inferred.

6.1 Improvement from the pair search

Since we will keep pair correlation information for a rel-

atively low threshold to facilitate the enumeration tree

construction, we need to choose the affordable low

threshold first, and then search pairs whose correlation is

above the threshold.

6.1.1 Count the number of pair candidates

Before we determine the threshold to search the satisfied

pairs, we can count how many pair’s correlation upper

bounds are above a tentative threshold. This number can

help us to estimate the time we will spend on the satisfied

pair search because the support of the pair needs to be

retrieved if its correlation upper bound is above the

threshold. If the IO cost of retrieving the pair support is

20 ms and we can spend one week on the satisfied pair

search, we should not choose the threshold under which the

number of pair candidates is above 30 million. The number

of candidates and the time we spent on counting candidates

under different thresholds are shown in Figs. 3 and 4

respectively. To get the number of pair candidate, 2-D

search is linear and 1-D search is exponential with the

threshold. When the threshold is 0, the 1-D search will

check all the pairs. The runtime of 1-D search when the

threshold is 0 is equal to the runtime of the brute-force

method.

6.1.2 Search the satisfied pairs

Since the IO cost for calculating correlation of pairs is

much higher than the time cost for calculating correlation

upper bound, the upper bound calculation can save a lot of

unnecessary IO cost when the threshold is high. The run-

time of retrieving the satisfied pairs by calculating corre-

lation upper bound first given different correlation

thresholds is shown in Fig. 5. The runtime of the upper

bound, 1-D, and 2-D search all decreases drastically as we

increase the threshold. When the threshold is 0, the upper

bound search will retrieve all the pair support. The runtime

of upper bound search when the threshold is 0 is equal to

the runtime of the brute-force method. From the graph,

both 1-D and 2-D search take much less time than the

upper bound search when the threshold is high because 1-D

and 2-D search take less time to find the pairs whose

correlation upper bound is higher than the threshold.

However, the upper bound, 1-D, and 2-D search do not

make too much difference for us when searching the sat-

isfied pairs, since we need to keep pair correlation

1 http://www.netflixprize.com/.
2 http://fimi.cs.helsinki.fi/data/.
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information for a relatively low threshold to facilitate the

enumeration tree construction.

6.2 Improvement from the enumeration tree structure

The fully-correlated values saved in the enumeration tree

benefit the next round search. We need to build the tree

first, and then handily retrieve MFCIs according to fully-

correlated values saved in the enumeration tree.

6.2.1 Build the enumeration tree

Since it is hard to estimate the time we will spend to build

the enumeration tree for any given threshold, the best way
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to build the enumeration tree is to choose a relative high

threshold first, and then gradually increment the enumer-

ation tree by lowering the threshold. Given the threshold h

and the threshold gap g, the time to build the enumeration

tree T for the threshold h is a, the time to build the enu-

meration tree T1 for the threshold ðhþ gÞ is b, and the time
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Fig. 5 The runtime for

retrieving the satisfied pairs
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for incrementing tree from T1 to T is c. Therefore, the

runtime of original MFCI is a, and the total runtime of the

incremental algorithm is ðbþ cÞ. The runtime of original

MFCI and the incremental algorithm given the threshold

gap g and different threshold is shown in Fig. 6. The total

runtime of these two algorithms is very close, but the

incremental algorithm is more flexible for user interactions.

6.2.2 Generate MFCIs from the enumeration tree

The enumeration tree saving fully-correlated values has

exactly the same downward-closed property of the enu-

meration tree saving support, we can apply any search

technique for maximal frequent itemsets in our situation.

Here, we only show how much improvement we get if we

use MAFIA to generate MFCIs from the enumeration tree.

Figure 7 shows the runtime of the original MFCI algorithm

and the MFCI generation from the enumeration tree. The

MFCI generation from the enumeration tree is much faster

than the original MFCI algorithm.

6.3 Combination of two algorithms

If the goal is to build a relatively large enumeration tree

which can facilitate the search of MFCIs under different

thresholds, we use the following procedure. First, 2-D

search is used to evaluate the threshold h under which time

allows to retrieve all the correlated pairs. Second, upper

bound search is used to find the correlated pairs and save

their correlation value in the database. Third, we choose a

relative high threshold, and then gradually update the

enumeration tree by lowering the threshold until we run out

of time to grow the tree or lowering the threshold to h.

After that, we can easily retrieve MFCIs under any

threshold above the threshold of the enumeration tree.

If the goal is to identify the highly correlated patterns,

we can combine 2-D search with the incremental algorithm

for the enumeration tree. From Figs. 5 and 6, we expect the

runtime saving mainly comes from the 2-D search.

7 Conclusions

Our previous work on the maximal fully-correlated

itemset framework can rule out the itemsets with irrele-

vant items and its downward-closed property helps to

achieve good computational performance. However,

unlike finding maximal frequent itemsets which can start

the pruning from 1-itemset, finding MFCIs must start the

pruning from 2-itemsets. In addition, the cost of pro-

cessing the Apriori procedure each time for a different

correlation threshold is also very high. In the paper, we

proposed the correlation upper bound search algorithm

and the enumeration tree structure saving the fully-cor-

related values to solve the above problems. Experimental

results show that our algorithm can be an order of mag-

nitude faster than the original MFCI. In the future, we

search for the data structure which takes less memory

saving the fully-correlated values and facilitate the search

like FP-tree [14] for frequent itemsets.
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