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Abstract

The paper applies knowledge transfer methods to the problem of detecting Wikipedia van-
dalism detection, defined as malicious editing intended to compromise the integrity of the
content of articles. A major challenge of detecting Wikipedia vandalism is the lack of
a large amount of labeled training data. Knowledge transfer addresses this challenge by
leveraging previously acquired knowledge from a source task. However, the characteristics
of Wikipedia vandalism are heterogeneous, ranging from a small replacement of a letter to
a massive deletion of text. Selecting an informative subset from the source task to avoid
potential negative transfer becomes a primary concern given this heterogeneous nature.
The paper explores knowledge transfer methods to generalize learned models from a het-
erogeneous dataset to a more uniform dataset while avoiding negative transfer. The two
novel segmented transfer (ST) approaches map unlabeled data from the target task to the
most related cluster from the source task, classifying the unlabeled data using the most
relevant learned models.
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1. Introduction

Transfer learning discusses how to transfer knowledge across different data distributions,
providing solutions when labeled data are scarce or expensive to obtain. Motivated by the
problem of Wikipedia vandalism detection (Potthast and Gerling, 2007; Chin et al., 2010),
this paper investigates the question: how do we transfer a classifier trained to detect vandal-
ism in one article to another? We introduce two novel segmented transfer (ST) approaches
to learn from a labeled but diverse source task, which exhibits a wide-ranging distribution
of both positive and negative examples over the feature space, and then selectively transfer
the classifier to predict an unlabeled and more uniform target task. Our methods are also
tested when transferring between articles with similar distributions.

Our work is related to the source task selection problem, investigating methods to enhance
transfer learning performance and to minimize negative transfer. We concentrate specifically
on transfer at the knowledge level, i.e. the reuse of learned classifiers from a source task, as
opposed to transfer at level of instances, priors, or functions as exemplified by Pan and Yang
(2010). We investigate two methods to exploit a single source task to predict a target task
with no available labels. To improve knowledge transfer, it is useful to identify an effective
method to transfer knowledge from the source task to the target task. In this paper, we
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assume that perhaps not all the source task is useful and perhaps not all the target task can
learn from the available source task. Our work aims to address the following questions:

- If not all the source task is related to the target task, how do we select the most
relevant subset from the source task?

- If not all the target task can be explained or learned from the source task, how do
we identify the subset from the target task that can benefit from most the knowledge
transfer?

Wikipedia, the online encyclopedia, is a popular and influential collaborative information
system. The collaborative nature of authoring has exposed it to malicious editing, or
vandalism, defined as “any addition, removal, or change of content made in a deliberate
attempt to compromise the integrity of Wikipedia'.” Wikipedia vandalism detection, an
adversarial information retrieval task, is a recently emerging research area. The goal of the
task is to determine, for each newly edited revision, whether it could be a vandalism instance
and to create a ranked list of probable vandalism edits to alert Wikipedia users (usually
the stewards for an article). However, determining if an edit is malicious is challenging and
acquiring reliable class labels is non-trivial. To classify a new and unlabeled dataset, it is
useful to leverage knowledge from prior tasks.

Wikipedia vandalism instances exhibit heterogeneous characteristics. A vandalism in-
stance can be a large-scale editing or a small change of stated facts. Each type of vandalism
may demonstrate different feature characteristics and an article may contain more instances
of one type of vandalism than others. Moreover, the distribution of different types of van-
dalism may vary from article to article. For example, ‘Microsoft’ article may contain higher
ratio of graffiti instances whereas ‘Abraham Lincoln’ article may be more vulnerable to mis-
information instances. The heterogeneous nature of Wikipedia vandalism detection could
potentially introduce negative transfer (Rosenstein et al., 2005). It requires a selective
mechanism to assure the quality of knowledge transfer, for example, leveraging knowledge
about “graffiti” instances from the source task to detect graffiti, as opposed to other types
of vandalism instances, in the target task. To resolve the problem of a heterogeneous source
task, we introduce two methods to identify the informative segments from the source task
in the absence of class labels.

In this paper, instead of learning from multiple source, we focus on the problem setting
in which only a single source task is available. Both the source and target task have the
same input and output domains, but their samples are drawn from different populations.
Each sample in both the source and target task is a revision of a given Wikipedia article,
preprocessed into a feature space representing a collection of statistical language model
features. The output labels indicate whether the article is a vandalism instance.

We organize the rest of paper as follows. Section 2 introduces the two segmented transfer
approaches. Section 3 describes the experimental setups, including the datasets, the fea-
tures, and the six experimental settings. Sections 4 and 5 present the experimental results
and evaluations. In Section 6, we discuss related work, and we conclude the paper with
future directions in Section 7.

1. http://en.wikipedia.org/wiki/Wikipedia:Vandalism
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Table 1: Tabular comparison of STST and TTST

STST TTST

Primary assumption: Not all the source task is Not all the target task can
useful benefit from the available

source task

Train cluster models at: Source task Target task

Assign cluster membership to: Target task Source task

Max number of classifiers: Number of clusters found in  Number of clusters found in
the source task the target task

Transferred object: Classifiers trained from the source task

2. Segmented Transfer (ST)

In this paper, we propose segmented transfer (ST) to enrich the capability of transfer
learning and to address the issue of potential negative transfer. The goal of ST is to
identify and learn from the most related segment, a subset from the training samples, from
the source task. Our motivation comes from two assumptions:

- Not all of the source task is useful, and
- Not all of the target task can benefit from the available source task.

We propose the source task segmented transfer (STST) and the target task segmented
transfer (TTST) approaches to address each assumption and summarize the two approaches
in Table 1.

Source task segmented transfer (STST) The STST approach clusters the source
task, assigning cluster membership to the target task. In Figure 1, the labeled source
task is first segmented into clusters. Fach cluster has its own classifier. We then assign
cluster membership to the unlabeled target task and transfer the classifier trained from the
corresponding cluster of the source task. Because the distribution of the feature space is
different between the source and target tasks, it is likely that some source task data will not
be used. The approach aims to transfer knowledge acquired only from the related segment
to minimize negative transfer.

Target task segmented transfer (TTST) The TTST approach clusters the target
task, assigning cluster membership to the source task. The goal of the TTST is to differ-
entiate samples that can be better learned from the provided source task. In Figure 2, the
unlabeled target task is first segmented into clusters. We then assign cluster membership
to the labeled source task and train a classifier for each cluster. Finally, the classifiers are
transferred to the corresponding clusters in the target task. As shown in Figure 2, some
data from the target task may not be well learned because of the lack of an appropriate
source task.
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Figure 2: Flowchart of target task segmented transfer (TTST).

3. Experiments

This section describes the datasets used for experiments, the input feature space, the six
experimental settings, and the cluster membership assignment distributions for each setting.

DATASET DESCRIPTION In four of the experiments, we clustered and trained on the Webis
Wikipedia vandalism (Webis) corpus (Potthast and Gerling, 2007) and tested on the revision
history of the “Microsoft” and “Abraham Lincoln” articles on Wikipedia (Chin et al., 2010).
The other two experiments use Microsoft as the source task and transfer to the Lincoln
article.



Di1vIDE AND TRANSFER

The Webis dataset contained randomly sampled revisions of different Wikipedia articles,
drawn from different categories. The Microsoft and Lincoln datasets contained the revision
history of those articles. Although class labels were available for both datasets, the class
information was ignored during the clustering and was used to build classifiers and to
demonstrate the performance of the two methods. Table 2 is a tabular description of
the three datasets. The AUC and AP scores for the Microsoft and Lincoln dataset were
computed by 10-fold cross validation using the provided class labels using an SVM classifier
with RBF kernel. The parameters v and C' were chosen empirically to achieve the best
performance.

Table 2: Dataset description

Positive | Negative | Total
Webis 301 639 940
Microsoft 268 206 474
Lincoln 178 223 401

FEATURE DESCRIPTION All three datasets used features generated by statistical language
modeling (SLM) using the CMU SLM toolkit (Clarkson and Rosenfeld, 1997). SLM com-
putes the distribution of tokens in natural language text and assigns a probability to the
occurrence of a string S or a sequence of m words. The evallm tool evaluates the language
model dynamically, providing statistics such as perplexity, number of n-gram hits, number
of OOV (out of vocabulary), and the percentage of OOV from a given text. The evallm
tool generates features separately from the diff data for the new revision and the full new
revision to build classifiers. In addition to the 18 attributes (9 for the diff and 9 for the full
revision) generated from SLM, three features: ratio of insertion, ratio of change, and ratio
of deletion, were added to the set of attributes. The 21 attributes were generated for each
revision in the dataset. Table 3 summarizes features used for the classification.

EXPERIMENTAL SETUP AND CLUSTERING ALGORITHM Table 4 describes six experimental
settings. STST and TTST each have three experiments with different combinations of the
source and target task. We used the Weka (Hall et al., 2009) implementation of clustering,
using the Expectation Maximization (EM) algorithm to optimize Gaussian mixture models
to cluster the source and target tasks. Using cross validation, the EM algorithm determined
the number of clusters to generate. To evaluate the ranked results from the experiments,
we used AUC and Average Precision (AP). The ranked list was sorted by the probability
of the predictions generated by SVM classifiers.

CLUSTER MEMBERSHIP DISTRIBUTION This paragraph describes the cluster memberships
and the distributions of positive and negative instances for the six experimental settings.
Tables 5 and 6 present the cluster assignment distribution for STST. In Experiments 1
and 2, the source Webis dataset is segmented into 16 clusters (see Table 5). The target
Microsoft and Lincoln datasets are mapped to 9 and 8 of these clusters respectively. The
results of cluster assignment confirm the assumption that not all the source task is useful
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Table 3: Definition of Features

Feature

Definition

word_num(d)
perplex(d)
entropy/(d)
oov_num(d)
oov_per(d)
bigram_hit(d)
bigram_per(d)
unigram_hit(d)
unigram_per(d)
ratio_a

Number of known words (from diff)
Perplexity value (from diff)

Entropy value (from diff)

Number of unknown words (from diff)
Percentage of unknown words (from diff )
Number of known bigrams (from diff)
Percentage of known bigrams (from diff)
Number of known unigrams (from diff)
Percentage of known unigrams (from diff)
Ratio of added text from previous revision

ratio_c Ratio of changed text from previous revision
ratio_d Ratio of deleted text from previous revision
Table 4: Six experimental settings for STST and TTST
Method | Exp | Source Task Target Task
1 Webis Microsoft
STST 2 Webis Lincoln
3 Microsoft Lincoln
4 Webis Microsoft
TTST 5 Webis Lincoln
6 Microsoft Lincoln
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for the target task. However, the source task can still be fully exploited. In Experiment 3,
as shown in Table 6, all the source task (Microsoft) instances are useful for the target task
(Lincoln), both of which were determined to contain three clusters.

Table 7 shows the cluster assignment distributions for the TTST approach (Experiments
4, 5, and 6). The distribution shows that sometimes part of the target task would not have
available source task to learn from. For example, in Experiment 4, the source task is only
useful for cluster 2 of the target task; in Experiment 5, it is only useful for cluster 1.

Table 5: Cluster membership distributions for Experiments 1 and 2.
Source Task Target Task
Webis Microsoft (Exp:1) | Lincoln (Exp:2)
Source cluster | Data Distri. (+,—) | Data Distri. (+,—) | Data Distri. (+,—)
1 75 (9,66) 43 (22,21) 48 (27,21)
2 24 (1,23) 192 (116,76) 85 (41,44)
3 16 (10,6) 153 (80,73) 215 (86,129)
4 25 (8,17) 18 (6,12)
5 46 (24,22) 49 (20,29)
6 40 (35,5) 16 (16,0) 11 (5,6)
7 41 (3,38) 2 (2,0) 1(1,0)
8 130 (9,121)
9 63 (50,13)
10 43 (9,34) 1(0,1)
11 75 (2,73)
12 43 (6,37)
13 62 (28,34) 17 (12,5) 22 (11,11)
14 60 (60,0)
15 149 (8, 141)
16 48 (39,9) 1(0,1) 1 (1,0)
Total 940 (301,639) 474 (268, 206) 400 (178,223)
Table 6: Cluster membership distribution for Experiment 3.
Source Task Target Task
Microsoft Lincoln
Exp | Source cluster | Data Distri. (+,—) | Data Distri. (+,—)
1 344 (186, 158) 357 (146, 211)
2 125 (80, 45) 42 (30,12)
3
3 5(2,3) 2 (2,0)
Total 474 (268,206) 401 (178,223)
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Table 7: Cluster membership distribution for Experiments 4, 5, and 6

Target Task Source Task
Exp | Target cluster | Data Distri. (+,—) | Data Distri. (+,—)
1 344 (186, 158) 0
4 2 125 (80, 45) 940 (301,639)
3 5 (2,3) 0
Total 474 (268,206) 940 (301,639)
1 56 (36,20) 940 (301,639)
- 2 115 (45,70) 0
3 230 (97,133) 0
Total 401 (178,223) 940 (301,639)
1 56 (36,20) 159 (93,66)
; 2 115 (45,70) 121 (56,65)
3 230 (97,133) 194 (119,75)
Total 401 (178,223) 474 (268,206)

4. Experimental results

This section describes the experimental results for STST and TTST. Our results show
that the two proposed approaches improved the ranking, moving more actual vandalism
instances to the top of the ranked list. Table 8 shows the performance of the baseline, a
direct transfer without either STST or TTST, using an SVM classifier with linear and RBF
kernels. In this section, results that outperform the baseline are marked with a 7.

Table 8: Baseline performance.

Exp Classifier AUC AP
1 and 4 SVM w/ linear kernel (C=1) 0.5333 | 0.6002
SVM w/ RBF kernel (C=1, v =0.1) 0.5466 | 0.5862
5 and 5 | SYM w/ Tincar kernel (C=1) 0.5276 | 0.4528
SVM w/ RBF kernel (C=0.8, v =0.16) | 0.5396 | 0.4454
3 and 6 SVM w/ linear kernel (C=500) 0.6089 | 0.6134
SVM w/ RBF kernel (C=500, v = 0.02) | 0.6215 | 0.6021

4.1. STST Evaluation

Table 9 shows the experimental results for the STST approach. We compared the perfor-
mance of STST with the best performance for direct transfer, i.e. train on the source task
and transfer directly to the target task, using the SVM classifier with RBF kernel (see Ta-
ble 8). The results indicate that the STST approach consistently outperforms the baseline
across the three experiments.
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Table 9: Experiment results for STST
Experiment 1 Experiment 2 Experiment 3
AUC AP AUC AP AUC AP

0.55417 | 0.6095% || 0.55197 | 0.50637 || 0.6883} | 0.65147

4.2. TTST Evaluation

Table 10 shows the experimental results for the TTST approach. As shown in Table 7, only
cluster 2 in Experiment 4 and cluster 1 in Experiment 5 have the source task to learn from.
Therefore, presumably, the classifier trained for the assigned cluster in the target task will
perform better on the assigned cluster than on other clusters.

The results in Experiment 4 support the assumption. The performance of cluster 2 is
much higher than cluster 1 when we used the same classifier trained from the source task
for both clusters. Although the cluster 3 in Experiment 4 has high AUC and AP results, it
is noted that the size of the cluster is quite small and the results might be insignificant.

Experiment 5 presents mixed results on AUC and AP. We observe that the AP, but not
the AUC, is higher in cluster 1, to which all the source task was assigned. In general,
AP is more sensitive to the order at the top of the ranked list whereas AUC evaluates
the overall number of correctly ranked pairs. In the case that AP is higher but not AUC,
it indicates that the algorithm performs better at the top of the list; however, it doesn’t
create more correctly ranked pairs. To support this observation, we evaluated the results
using Normalized Discounted Cumulative Gain (NDCG) at the rank position 5 and 10.
Figure 3 shows that cluster 1 outperforms the other two clusters. The results suggest the
occurrence of negative transfer when the learned classifier was used on less related datasets.
The results also demonstrate how negative transfer could be minimized when the target
task only learned from more informative segments in the source task.

In Experiment 6, all three clusters from the target task (Lincoln) have assigned instances
from the source task (Microsoft). The combined result (the ‘Total’ row) outperforms the
baseline (i.e., direct transfer of a classifier trained from the entire source task).

Table 10: Experiment results for TTST, breakdown by cluster.

5. Related Work

SOURCE TASK SELECTION

Experiment 4 Experiment 5 Experiment 6
# | AUC AP # | AUC AP # AUC AP
1 0.5082 0.5503 1 0.4472 | 0.63467 1 0.67921 | 0.79597
2 | 0.65697 | 0.72017 | 2 0.4942 0.3641 2 0.6288+ 0.495
3 | 0.83337 | 0.83337 || 3 | 0.56037 | 0.4393 3 0.7387 | 0.66377
Total | 0.66277 | 0.64267

Research on multi-task learning and reinforcement learning has
discussed the measurement of task relatedness and the selection of related tasks (Silver and
McCracken, 2003; Ben-David and Borbely, 2008; Taylor et al., 2007). In this paper, we
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NDCG Results for Experiment 5
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Figure 3: NDCG results for Experiment 5

focus on the problem setting in which only a single source task is available, and no labels
are available for the target task. Research has used semi-supervised learning methods such
as EM algorithm combined with NaiveBayes classifier (Nigam et al., 2000) and co-clustering
(Dai et al., 2007) to improve text classifiers. In contrast with current research, our approach
does not require labeled data in the target task, selecting the source task segments solely
based on the feature distribution.

A common approach to select a related source task is to measure the relatedness be-
tween the source and target task. Silver and Mercer (1996) employed a learning rate as
a function to measure relatedness between a source task and the target task. Kuhlmann
and Stone (2007) constructed a graph for each task based on the elements and rules and
then compared the graph isomorphism to select similar tasks. Thrun and O’Sullivan (1998)
clustered multiple source tasks into a hierarchy. Their method transferred knowledge from
the cluster most related to the target task to emphasize the knowledge among similar and
discriminating instances. The authors used class label information to construct clusters,
matching the target distribution of a given task with the most similar cluster.

CLASSIFIER REUSE  Knowledge transfer emphasizes the reuse of previously acquired knowl-
edge, i.e. the classifiers, from the source task to the target task. A common approach to
reuse classifiers is to select among candidate solutions from the source tasks. Zhang et al.
(2005) constructed an ensemble of decision trees trained from related tasks to improve pre-
diction on the problem with limited labeled data. Eaton and Desjardins (2006) developed
an ensemble framework where each member classifier focuses on one resolution level. The
multi-resolution learning facilitates transfer between related tasks. Yang et al. (2007) de-
scribed methods to select auxiliary classifiers from a set of existing classifiers. The authors

10
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used the EM algorithm to estimate the distribution respective to each class and then select
the classifier that can best separate the between-class score distribution, creating “pseudo”
labels to evaluate each classifier and then selecting classifiers of average precision scores.

By comparison, our approach aims to transfer classifiers learned only from the related seg-
ment, as opposed to the entire set, of the source task. The experimental results demonstrate
the promise of the proposed segmented transfer approach.

6. Conclusion and Future Work

In this paper, we investigated two segmented transfer approaches to transfer knowledge
while avoiding negative transfer. The objective of the proposed approach is to address the
heterogeneous characteristics of Wikipedia vandalism. We clustered the source and the
target task to map unlabeled data from the target task to the most related cluster from
the source task, classifying the unlabeled data using the most relevant learned models. Our
results show enhanced performance (e.g. AUC and AP) on ranking the probable vandalism
instances. In the future, we will explore the soft clustering method, assign each instance
in the target task a probability of cluster membership, and combine predictions. We will
also consider enhancing the methods’ ability to avoid negative transfer by implementing
an overall “relatedness” measure, so that points in the target task are not classified using
distant clusters.
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