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INTRODUCTION 
Feature selection has been an active research area in pattern recognition, statistics, 

and data mining communities. The main idea of feature selection is to choose a subset of 
input variables by eliminating features with little or no predictive information. Feature 
selection can significantly improve the comprehensibility of the resulting classifier 
models and often build a model that generalizes better to unseen points. Further, it is 
often the case that finding the correct subset of predictive features is an important 
problem in its own right. For example, physician may make a decision based on the 
selected features whether a dangerous surgery is necessary for treatment or not.   

 Feature selection in supervised learning has been well studied, where the main 
goal is to find a feature subset that produces higher classification accuracy.  Recently, 
several researches (Dy and Brodley, 2000b, Devaney and Ram, 1997, Agrawal et al., 
1998) have studied feature selection and clustering together with a single or unified 
criterion.  For feature selection in unsupervised learning, learning algorithms are 
designed to find natural grouping of the examples in the feature space.  Thus feature 
selection in unsupervised learning aims to find a good subset of features that forms high 
quality of clusters for a given number of clusters.  

However, the traditional approaches to feature selection with single evaluation 
criterion have shown limited capability in terms of knowledge discovery and decision 
support.  This is because decision-makers should take into account multiple, conflicted 
objectives simultaneously.  In particular no single criterion for unsupervised feature 
selection is best for every application (Dy and Brodley, 2000a) and only the decision-
maker can determine the relative weights of criteria for her application.  In order to 
provide a clear picture of the (possibly nonlinear) tradeoffs among the various objectives, 
feature selection has been formulated as a multi-objective or Pareto optimization.  

In this framework, we evaluate each feature subset in terms of multiple objectives.  
Each solution si is associated with an evaluation vector F = F1(si),..., FC(si) where C is the 
number of quality criteria.  One solution s1 is said to dominate another solution s2 if ∀c: 
FC(s1) ≥ FC(s2) and ∃c: FC(s1) > FC(s2), where FC is the c-th criterion, c ∈ {1,...,C}. 
Neither solution dominates the other if ∃c1,c2: FC1(s1) > FC2(s2), FC2(s2) > FC2(s1). We 
define the Pareto front as the set of nondominated solutions. In feature selection as a 
Pareto optimization, the goal is to approximate as best possible the Pareto front, 
presenting the decision maker with a set of high-quality solutions from which to choose.  

We use Evolutionary Algorithms (EAs) to intelligently search the space of possible 
feature subsets.  A number of multi-objective extensions of EAs have been proposed 
(VanVeldhuizen, 1999) to consider multiple fitness criteria effectively.  However, most 
of them employ computationally expensive selection mechanisms to favor dominating 
solutions and to maintain diversity, such as Pareto domination tournaments (Horn, 1997) 



 

and fitness sharing (Goldberg and Richardson, 1987).  We propose a new algorithm, 
Evolutionary Local Selection Algorithms (ELSA), where an individual solution is 
allocated to a local environment based on its criteria values and competes with others to 
consume shared resources only if they are located in the same environment.   

The remainder of the chapter is organized as follows. We first introduce our search 
algorithm, ELSA.  Then we discuss the feature selection in supervised and unsupervised 
learning, respectively. Finally, we present a new two-level evolutionary environment, 
Meta-Evolutionary Ensembles (MEE) that uses feature selection as the mechanism for 
boosting diversity of a classifier in an ensemble.     

EVOLUTIONARY LOCAL SELECTION ALGORITHMS (ELSA) 

Agents, Mutation and Selection 
ELSA springs from artificial life models of adaptive agents in ecological 

environments (Menczer and Belew, 1996). In ELSA, an agent may die, reproduce, or 
neither based on an endogenous energy level that fluctuates via interactions with the 
environment.  Figure 1 outlines the ELSA algorithm at a high level of abstraction. 
   
                        initialize population of agents, each with energy θ/2    
                        while there are alive agents and for T iterations    
                                 for each energy source c    
                                        for each v (0 ..  1)    
                                              Eenvt

c(v) ← 2 v Etot
c;                   

                                 for each agent a    
                                       a' ← mutate(crossover(a, random mate)); 
                                       for each energy source c    
                                               v ← Fitness(a',c);  ∆E ← min(v,Eenvt

c(v)); 
                                               Eenvt

c(v) ← Eenvt
c(v) - ∆E;  Ea ← Ea + ∆E;   

                                       Ea ← Ea - Ecost;   
                                       if (Ea > θ)    
                                               insert a' into population;    
                                       Ea’ ← Ea / 2;  Ea ← Ea - Ea’;   
                                       else if (Ea < 0)    
                                               remove a'  from population;   
                        endwhile 
 
                                         Figure 1: ELSA pseudo-code.  
 

The representation of an agent consists of D bits and each of D bits is an indicator 
as to the corresponding feature is selected or not (1 if a feature is selected, 0 otherwise). 
Each agent is first initialized with some random solution and an initial reservoir of 
energy, and competes for a scare resource, energy, based on multi-dimensional fitness 
and the proximity of other agents in solution space.  The mutation operator randomly 
selects one bit of the agent and flips it.  Our commonality-based crossover operator (Chen 
et al., 1999) makes the offspring inherit all the common features of the parents.   

In the selection part of the algorithm, each agent compares its current energy level 
with a constant reproduction threshold θ.  If its energy is higher than θ, the agent 
reproduces: the agent and its mutated clone that was just evaluated become part of the 
new population, each with half of the parent's energy.  If the energy level of an agent is 



positive but lower than θ, only the agent itself joins the new population. If an agent runs 
out of energy, it is killed. The population size is maintained dynamically over iterations 
and is determined by the carrying capacity of the environment depending on the costs 
incurred by any action, and the replenishment of resources (Menczer et al., 2000b).   

Energy Allocation and Replenishment 
In each iteration of the algorithm, an agent explores a candidate solution similar to 

itself.  The agent collects ∆E from the environment and is taxed with Ecost for this action.  
The net energy intake of an agent is determined by its offspring's fitness and the state of 
the environment that corresponds to the set of possible values for each of the criteria 
being optimized.1 We have an energy source for each criterion, divided into bins 
corresponding to its values.  So, for criterion fitness Fc and bin value v, the environment 
keeps track of the energy Eenvt

c(v) corresponding to the value Fc = v. Further, the 
environment keeps a count of the number of agents Pc(v) having Fc = v.  The energy 
corresponding to an action (alternative solution) a for criterion Fc is given by  
  

Fitness(a,c) = Fc(a) / Pc(Fc(a)).                                          (1) 
 

Agents receive energy only inasmuch as the environment has sufficient resources; 
if these are depleted, no benefits are available until the environmental resources are 
replenished.  Thus an agent is rewarded with energy for its high fitness values, but also 
has an interest in finding unpopulated niches in objective space, where more energy is 
available. Ecost for any action is a constant (Ecost < θ).  When the environment is 
replenished with energy, each criterion c is allocated an equal share of energy as follows: 
 

Etot
c = pmaxEcost / C                                                          (2) 

 
where C is the number of criteria considered.  This energy is apportioned in linear 
proportion to the values of each fitness criterion, so as to bias the population toward more 
promising areas in objective space.   

Advantages and Disadvantages 
One of the major advantages of ELSA is its minimal centralized control over 

agents. By relying on local selection, ELSA minimizes the communication among agents, 
which makes the algorithm efficient in terms of computational time and scalability 
(Menczer et al., 2000a).  Further, the local selection naturally enforces the diversity of the 
population by evaluating agents based on both their quality measurements and the 
number of similar individuals in the neighborhood in objective space.  Note also that 
ELSA can be easily combined with any predictive and clustering models.   

In particular, there is no upper limit of number of objective functions that ELSA 
can accommodate. Noting that no single criterion is best for every application, we 
consider all (or at least some) of them simultaneously in order to provide a clear picture 
of the (possibly nonlinear) tradeoffs among the various objectives. The decision-maker 
can select a final model after determining her relative weights of criteria for application.      

ELSA can be useful for various tasks in which the maintenance of diversity within 
the population is more important than a speedy convergence to the optimum.  Feature 



selection is one such promising application. Based on the well-covered range of feature 
vector complexities, ELSA is able to locate most of the Pareto front (Menczer et al., 
2000a). However, for problems requiring effective selection pressure, local selection may 
not be ideal because of its weak selection scheme.   

FEATURE SELECTION IN SUPERVISED LEARNING 
In this section, we propose a new approach for the customer targeting that 

combines evolutionary algorithms (EAs) and artificial neural networks (ANNs).  In 
particular, we want to address the multi-objective nature of the customer targeting 
applications -- maximizing hit rate and minimizing complexity of the model through 
feature selection.  We use the ELSA to search the possible combinations of features and 
ANNs to score the probability of buying new services or products using only the selected 
features by ELSA.    

Problem Specification and Data Sets 
Direct mailings to potential customers have been one of the most common 

approaches to market a new product or service. With a better understanding of who their 
potential customers were, the company would know more accurately whom to target, and 
they could reduce expenses and the waste of time and effort. In particular, we are 
interested in predicting potential customers who would be interested in buying a 
recreational vehicle (RV) insurance policy2 while reducing feature dimensionality.   

Suppose that one insurance company wants to advertise a new insurance policy 
based on socio-demographic data over a certain geographic area.  From its first direct 
mailing to 5822 prospects, 348 purchased RV insurance, resulting in a hit rate of 
348/5822 = 5.97%. Could the company attain a higher response rate from another 
carefully chosen direct mailings from the top x% of a new set of 4000 potential 
prospects?  

In our experiment, we use two separate data sets, a training (5822 records) and an 
evaluation set (4000 records). Originally, each data set had 85 attributes, containing 
socio-demographic information (attributes 1--43) and contribution to and ownership of 
various insurance policies (attributes 44--85). The socio-demographic data was derived 
using zip codes and thus all customers living in areas with the same zip code have the 
same socio-demographic attributes. We omitted the first feature (customer subtype) 
mainly because it would expand search space dramatically with little information gain if 
we represented it as a 41-bit variable. Further we can still exploit the information of 
customer type by recording the fifth feature (customer main type) as a 10-bit variable. 
The other features are considered continuous and scaled to a common range (0--9).   

ELSA/ANN Model Specification 

Structure of the ELSA/ANN Model 
Our predictive model is a hybrid model of the ELSA and ANN procedures, as 

shown in Figure 2. ELSA searches for a set of feature subsets and passes it to an ANN. 
The ANN extracts predictive information from each subset and learns the patterns using a 
randomly selected 2/3 of the training data. The trained ANN is then evaluated on the 
remaining 1/3 of the training data, and returns two evaluation metrics, Faccuracy and 



Fcomplexity (described below), to ELSA. Note that in both the learning and evaluation 
procedures, the ANN uses only the selected features. Based on the returned metric values, 
ELSA biases its search to maximize the two objectives until the maximum number of 
iterations is attained. 
 

Figure 2: The ELSA/ANN model. 
 

Among all evaluated solutions over the generations, we choose for further 
evaluation the set of candidates that satisfy a minimum hit rate threshold. With chosen 
candidates, we start a 10-fold cross validation. In this procedure, the training data is 
divided into 10 non-overlapping groups. We train an ANN using the first nine groups of 
training data and evaluate the trained ANN on the remaining group. We repeat this 
procedure until each of the 10 groups has been used as a test set once. We take the 
average of the accuracy measurements over the 10 evaluations and call it an intermediate 
accuracy.  We repeat 10-fold cross validation procedure five times and call the average of 
the five intermediate accuracy estimates estimated accuracy.    

We maintain a superset of the Pareto front containing those solutions with the 
highest accuracy at every Fcomplexity level covered by ELSA. For evaluation purposes, 
we subjectively decided to pick a best solution with the minimal number of features at the 
marginal accuracy level.3  Then we train the ANN using all the training data with the 
selected features only and the trained model is used to select the top x% of the potential 
customers in the evaluation set based on the estimated probability of buying RV 
insurance. We finally calculate the actual accuracy of our model.  

Evaluation Metrics 
We use two heuristic evaluation criteria, Faccuracy and Fcomplexity, to evaluate selected 

feature subsets. Each objective, after being normalized into 25 intervals to allocate 
energy, is to be maximized by ELSA. 
 
Faccuracy: The purpose of this objective is to favor feature sets with a higher hit rate.  We 
define two different measures, Faccuracy

1 and Faccuracy
2 for two different experiments.  In 

experiment 1, we select the top 20% of potential customers in descending order of the 
probability of purchasing the product and compute the ratio of the number of actual 
customers, AC, out of the chosen prospects, TC. We calculate Faccuracy

1 as follows:  
 

Faccuracy
1 = (1 / Zaccuracy

1) (AC / TC)                           (3) 
 



where Zaccuracy
1 is an empirically derived  normalization constant. 

In experiment 2, we measure accuracy at the first m intervals4 after dividing the 
range of customer selection percentages into 50 intervals with equal width (2%). At each 
interval i ≤ m, we select the top (2⋅i)% of potential customers in descending order of the 
probability of purchasing the product and compute the ratio of the number of actual 
customers, ACi, out of the total number of actual customers in the evaluation data, Tot. 
We multiply the width of interval and sum those values to get the area under the lift curve 
over m intervals. Finally we divide it by m to get our final metric, Faccuracy

2. We formulate 
it as follows: 

                                      (4) 
 

 
where Tot = 238, m = 25 and Zaccuracy

2 is an empirically derived normalization constant. 
 
Fcomplexity: This objective is aimed at finding parsimonious solutions by minimizing the 
number of selected features as follows: 
 

Fcomplexity = 1 - (d - 1)/(D - 1).                      (5) 
 
Note that at least one feature must be used. Other things being equal, we expect that 
lower complexity will lead to easier interpretability of solutions and better generalization.  

Experimental Results 

Experiment 1 
In this experiment, we select the top 20% of customers to measure the hit rate of 

each solution as in (Kim et al., 2000).  For comparison purpose, we implement the 
PCA/logit model by first applying PCA on the training set. We select 22 PCs --- the 
minimum required to explain more than 90% of the variance in the data set --- and use 
them to reduce the dimensionality of the training set and the evaluation set.  

We set the values for the ELSA parameters in the ELSA/ANN and ELSA/logit 
models as follows: Pr(mutation) = 1.0, pmax = 1,000, Ecost = 0.2, θ = 0.3, and T = 2,000.  
In both models, we select the single solution with the highest expected hit rate among 
those solutions with fewer than 10 features selected. We evaluated each model on the 
evaluation set and summarized our results in Table 1. 
 

Training set Evaluation set  
 Model (# Features) Hit Rate ± s.d # Correct Hit Rate 
PCA/logit (22) 12.83 ± 0.498 109 13.63 
ELSA/logit (6) 15.73 ± 0.203 115 14.38 
ELSA/ANN (7) 15.92 ± 0.146 120 15.00 

Table 1: Results of experiment 1. The column marked "# Correct" shows the number of 
actual customers who are included in the chosen top 20%. The number in parenthesis 
represents the number of selected features except for the PCA/logit model, where it 
represents the number of PCs selected.   
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In terms of the actual hit rate, ELSA/ANN returns the highest actual hit rate. 

Feature selection (the difference in actual hit rate between PCA/logit and ELSA/logit) 
and non-linear approximation (the difference in actual hit rate between ELSA/logit and 
ELSA/ANN) contribute about half of the total accuracy gain respectively. The 
improvement of the ELSA/ANN model in actual hit rate could make a meaningful 
difference in profit as the number of targeted prospects increases.   

The resulting model of ELSA/ANN is also easier to interpret than that of 
PCA/logit.  This is because, in the PCA/logit model, it is difficult to interpret the meaning 
of each of PCs in high dimensional feature spaces.  Further the ELSA/ANN model makes 
it possible to evaluate the predictive importance of each features.  The chosen seven 
features by the ELSA/ANN model are: Customer main type (average family),  

Contribution to 3rd party policy, car policy, moped policy and fire policy, and 
number of 3rd party policies and social security policies.  Among those features, we 
expected at least one of the car insurance related features to be selected.  Moped policy 
ownership is justified by the fact that many people carry their mopeds or bicycles on the 
back of RVs. Those two features are selected again by the ELSA/logit model.5 Using this 
type of information, we were able to build a potentially valuable profile of likely 
customers (Kim et al., 2000). 
 The fact that the ELSA/ANN model used only seven features for customer 
prediction makes it possible to save a great amount of money through reduced storage 
requirements (86/93 ≈ 92.5%) and through the reduced labor and communication costs 
for data collection, transfer, and analysis.  By contrast, the PCA/logit model needs the 
whole feature set to extract PCs.  We also compare the lift curves of the three models. 
Figure 3 shows the cumulative hit rate over the top x% of prospects (2 ≤ x ≤ 100).   

 

Figure 3: Lift curves of three models that maximize the hit rate when targeting the top 
20% of prospects. 

 
As expected, our ELSA/ANN model followed by ELSA/logit is the best when 

marketing around the top 20% of prospects. However, the performance of ELSA/ANN 



and ELSA/logit over all other target percentages was worse than that of PCA/logit. This 
is understandable because our solution is specifically designed to optimize at the top 20% 
of prospects while PCA/logit is not designed for specific selection points. This 
observation leads us to do the second experiment in order to improve the performance of 
ELSA/ANN model over all selection points. 

Experiment 2 
In this experiment, we search for the best solution that maximizes the overall 

accuracy up to the top 50% of potential customers. ELSA/ANN and ELSA/logit models 
are adjusted to maximize the overall area under the lift curve over the same intervals. In 
practice, we optimize over the first 25 intervals which have the same width, 2%, to 
approximate the area under the lift curve. Because this new experiment is 
computationally expensive, we use 2-fold cross validation estimates of all solutions. We, 
however, set the values of the ELSA parameters identically with the previous experiment 
except pmax = 200 and T = 500. Based on the accuracy estimates, we choose a solution 
that has the highest estimated accuracy with less than half of the original features in both 
models. We evaluate the three models on the evaluation set and summarize the results in 
Table 2 and in Figure  4.  
 

% of selected Model(# Features) 
5 10 15 20 25 30 35 40 45 50 

PCA/logit (22) 20.06 20.06 16.04 13.63 12.44 11.20 10.81 10.22 9.87 9.38 
ELSA/logit (46) 23.04 18.09 15.56 13.79 12.13 12.04 10.97 10.54 10.03 9.53 
ELSA/ANN(44) 19.58 17.55 16.40 14.42 13.13 11.96 10.97 10.40 9.98 9.64 

Table 2: Summary of experiment 2. The hit rates of three different models are shown 
over the top 50% of prospects.  

Figure 4: Lift curves of three models that maximize the area under lift curve when 
targeting up to top 50% of prospects. 
 

The ELSA/ANN model works better than PCA/logit and ELSA/logit over the 
targeting range between 15% and 50%. In particular, ELSA/ANN is best at 15%, 20%, 



25%, and 50% of targeted customers, and approximately equal to the best at 30-45%. The 
overall performance of ELSA/logit is better than that of PCA/logit. We attribute this to 
the fact that solutions from both ELSA models exclude many irrelevant features. 
PCA/logit, however, is competitive for targeting more than 50% of the customers, since 
ELSA/ANN and ELSA/logit do not optimize over these ranges. Though the well-
established parsimony of the ELSA/ANN models in experiment 1 is largely lost in 
experiment 2, the ELSA/ANN model is still superior to PCA/logit model in terms of the 
parsimony of selected features since the PCA/logit model needs the whole feature set to 
construct PCs.  

Conclusions 
In this section, we presented a novel application of the multi-objective evolutionary 

algorithms for customer targeting. We used ELSA to search for possible combinations of 
features and an ANN to score customers based on the probability that they will buy the 
new service or product. The overall performance of ELSA/ANN in terms of accuracy was 
superior to the traditional method, PCA/logit, and an intermediate model, ELSA/logit. 
Further, the final output of the ELSA/ANN model was much easier to interpret because 
only a small number of features are used. 
  In future work we want to investigate how more general objectives affect the 
parsimony of selected features. We also would like to consider a marketing campaign in a 
more realistic environment where various types of costs and net revenue for additional 
customers are considered. We could also consider budget constraints and 
minimum/maximum campaign sizes. This way the number of targeted customers would 
be determined inside an optimization routine to maximize the expected profit.  

FEATURE SELECTION IN UNSUPERVISED LEARNING 
In this section, we propose a new approach to feature selection in clustering or 

unsupervised learning. This can be very useful for enhancing customer relationship 
management (CRM) because standard application of cluster analysis uses the complete 
set of features or a pre-selected subset of features based on the prior knowledge of market 
managers. Thus it cannot provide new marketing models that could be effective but have 
not been considered. Our data-driven approach searches a much broader space of models 
and provides a compact summary of solutions over possible feature subset sizes and 
numbers of clusters. Among such high-quality solutions, the manager can select a 
specific model after considering the model's complexity and accuracy.  

Our model is also different from other approaches (Agrawal et al., 1998, Dy and 
Brodley 2000b, Devaney and Ram, 1997) in two aspects: the evaluation of candidate 
solutions along multiple criteria, and the use of a local evolutionary algorithm to cover 
the space of feature subsets and of cluster numbers. Further, by identifying newly-
discovered feature subsets that form well-differentiated clusters, our model can affect the 
way new marketing campaigns should be implemented.  

EM Algorithm for Finite Mixture Models 
The expectation maximization algorithm (Dempster et al., 1977) is one of the most 

often used statistical modeling algorithms (Cheeseman and Stutz, 1996). The EM 
algorithm often significantly outperforms other clustering methods (Meila and 



Heckerman, 1998) and is superior to the distance-based algorithms (e.g. K-means) in the 
sense that it can handle categorical data. The EM algorithm starts with an initial estimate 
of the parameters and iteratively recomputes the likelihood that each pattern is drawn 
from a particular density function, and then updates the parameter estimates.  For 
Gaussian distributions, the parameters are the mean µk and covariance matrix Σk. Readers 
who are interested in algorithm detail refer to (Buhmann, 1995, Bradley et al., 1998).  

In order to evaluate the quality of the clusters formed by the EM algorithm, we use 
three heuristic fitness criteria, described below.  Each objective is normalized into the 
unit interval and maximized by the EA.    
 
Faccuracy: This objective is meant to favor cluster models with parameters whose 
corresponding likelihood of the data given the model is higher.  With estimated 
distribution parameters µk and Σk, Faccuracy is computed as follows: 

 
                          (6) 

  
where Zaccuracy is an empirically derived, data-dependent normalization constant meant to 
achieve Faccuracy values spanning the unit interval.  
 
Fclusters: The purpose of this objective is to favor clustering models with fewer clusters, if 
other things being equal.  
 

Fclusters = 1 -  (K - Kmin) / (Kmax - Kmin)                                (7) 
 
where Kmax (Kmin) is the maximum (minimum) number of clusters that can be encoded 
into a candidate solution's representation. 
         
Fcomplexity: The final objective is aimed at finding parsimonious solutions by minimizing 
the number of selected features: 
 

 Fcomplexity = 1 - (d - 1)/(D - 1).                                   (8) 
 
Note that at least one feature must be used.  Other things being equal, we expect that 
lower complexity will lead to easier interpretability and scalability of the solutions as 
well as better generalization. 

The Wrapper Model of ELSA/EM 
We first outline the model of ELSA/EM in Figure 5. In ELSA, each agent 

(candidate solution) in the population is first initialized with some random solution and 
an initial reservoir of energy. The representation of an agent consists of (D + Kmax - 2) 
bits. D bits correspond to the selected features (1 if a feature is selected, 0 otherwise). 
The remaining bits are a unary representation of the number of clusters.6 This 
representation is motivated by the desire to preserve the regularity of the number of 
clusters under the genetic operators: changing any one bit will change K by one. 
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initialize pmax agents, each with energy η/2;    
while there are alive agents in Popg and t < T   
        Replenishment();   
        for each agent a in Popg   
              Search & Evaluation();  Selection();  t = t+1; 
        g = g+1;    
endwhile    
 
Replenishment(){   
       for each energy source c ∈ {1, ..., C}    
             for each v ∈ (1/B, 2/B, ..., 1)  where B is number of bins   
                   Eenvt

c(v) ← 2vEtot
c ;  } 

 
Search & Evaluation() { 
      a' ← mutate(crossover(a, random mate)); 
      for each energy source c ∈ {1, ..., C}   
             v ← Fitness(a');   ∆E ← min(v,Eenvt

c(v)); 
             Eenvt

c(v) ← Eenvt
c(v) - ∆E;  Ea ← Ea + ∆E;   Ea ← Ea - Ecost;  }  

 
Selection(){   
      if (Ea > η)    
insert a,a' into Popg+1;  Ea’ ← Ea / 2;  Ea ← Ea - Ea’;   
      else if (Ea > 0)    
              insert a into Popg+1;  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                   Figure 5: The pseudo-code of ELSA/EM. 
 

Mutation and crossover operators are used to explore the search space and are 
defined in the same way as in previous section.  In order to assign energy to a solution, 
ELSA must be informed of clustering quality.  In the experiments described here, the 
clusters to be evaluated are constructed based on the selected features using EM 
algorithm.  Each time a new candidate solution is evaluated, the corresponding bit string 
is parsed to get a feature subset J and a cluster number K.  The clustering algorithm is 
given the projection of the data set onto J, uses it to form K clusters, and returns the 
fitness values. 

Experiments on the Synthetic Data 

Data Set and Baseline Algorithm 
In order to evaluate our approach, we construct a moderate-dimensional synthetic 

data set, in which the distributions of the points and the significant features are known, 
while the appropriate clusters in any given feature subspace are not known. The data set 
has N = 500 points and D = 30 features. It is constructed so that the first 10 features are 
significant, with 5 "true" normal clusters consistent across these features. The next 10 
features are Gaussian noise, with points randomly and independently assigned to 2 
normal clusters along each of these dimensions. The remaining 10 features are white 
noise. We evaluate the evolved solutions by their ability to discover five pre-constructed 
clusters in a ten-dimensional subspace.  



We present some 2-dimensional projections of the synthetic data set in Figure 6. In 
our experiments, Individuals are represented by 36 bits, 30 for the features and 6 for K 
(Kmax = 8). There are 15 energy bins for all energy sources, Fclusters, Fcomplexity, and Faccuracy. 
The values for the various ELSA parameters are: Pr(mutation) = 1.0, Pr(crossover) = 0.8, 
pmax = 100, Ecost = 0.2, Etotal = 40, η = 0.3, and T = 30,000.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 6: A few 2-dimensional projections of the synthetic data set. 

Experimental Results  
We show the candidate fronts found by the ELSA/EM algorithm for each different 

number of clusters K in Figure 7.  

Figure 7: The candidate fronts of ELSA/EM model. We omit the candidate front for K = 
8 because of its inferiority in terms of clustering quality and incomplete coverage of the 
search space. Composition of selected features is shown for Fcomplexity corresponding to 10 
features (see text).  



We analyze whether our ELSA/EM model is able to identify the correct number of 
clusters based on the shape of the candidate fronts across different values of K and 
Faccuracy. The shape of the Pareto fronts observed in ELSA/EM is as follows: an ascent in 
the range of higher values of Fcomplexity (lower complexity), and a descent for lower values 
of Fcomplexity (higher complexity). This is reasonable because adding additional significant 
features will have a good effect on the clustering quality with few previously selected 
features. However, adding noise features will have a negative effect on clustering quality 
in the probabilistic model, which, unlike Euclidean distance, is not affected by 
dimensionality. The coverage of the ELSA/EM model shown in Figure 7 is defined as:  

 
                                  (9) 

 
We note that the clustering quality and the search space coverage improve as the 

evolved number of clusters approaches the "true" number of cluster K = 5. The candidate 
front for K = 5 not only shows the typical shape we expect but also an overall 
improvement in clustering quality. The other fronts do not cover comparable ranges of 
the feature space either because of the agents' low Fclusters (K  = 7) or because of the 
agents' low Faccuracy and Fcomplexity (K = 2 and K = 3). A decision-maker again would 
conclude the right number of clusters to be 5 or 6.  

We note that the first 10 selected features, 0.69 ≤ Fcomplexity ≤ 1, are not all 
significant.  This notion is again quantified through the number of significant-Gaussian 
noise-white noise features selected at Fcomplexity = 0.69 (10 features) in Figure 7.7 None of 
the "white noise" features is selected.  We also show snapshots of the ELSA/EM fronts 
for K = 5 at every 3,000 solution evaluations in Figure 8. ELSA/EM explores a broad 
subset of the search space, and thus identifies better solutions across Fcomplexity as more 
solutions are evaluated. We observed similar results for different number of clusters K.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Candidate fronts for K = 5 based on Faccuracy evolved in ELSA/EM. It is 
captured at every 3,000 solution evaluations and two fronts (t = 18,000 and t = 24,000) 
are omitted because they have the same shape as the ones at t = 15,000 and t = 21,000, 
respectively.  
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Table 3 shows classification accuracy of models formed by both ELSA/EM and the 
greedy search. We compute accuracy by assigning a class label to each cluster based on 
the majority class of the points contained in the cluster, and then computing correctness 
on only those classes, e.g., models with only two clusters are graded on their ability to 
find two classes. ELSA results represent individuals selected from candidate fronts with 
less than eight features.  ELSA/EM consistently outperforms the greedy search on models 
with few features and few clusters.  For more complex models with more than 10 selected 
features, the greedy method often shows higher classification accuracy.  
 

Number of selected features K 2 3 4 5 6 7 W-L-T 
ELSA/EM 52.6±0.3 56.6±0.6 92.8±5.2 100±0.0 100±0.0 100±0.0 2 
Greedy 51.8±1.3 52.8±0.8 55.4±1.1 56.6±0.4 62.8±3.2 80.2±8.5 

5-0-1 

ELSA/EM 83.2±4.8 52.0±6.6 91.6±5.7 93.8±6.2 99.0±1.0 100±0.0 3 
Greedy 40.6±0.3 40.8±0.2 40.2±0.2 63.6±3.8 100±0.0 100±0.0 

4-0-2 

ELSA/EM 46.2±2.2 -- 50.6±0.6 89.6±5.9 52.0±1.0 60.6±5.1 4 
Greedy 27.8±0.8 27.8±0.4 29.0±0.4 29.6±0.9 38.0±4.4 74.2±3.5 

4-2-0 

ELSA/EM 44.6±2.0 32.6±3.8 72.0±3.8 62.4±1.9 66.4±3.7 88.0±4.9 5 
Greedy 23.0±0.4 22.2±0.8 24.2±0.9 23.8±0.5 29.6±1.7 81.2±3.0 

5-0-1 

W-L-T 3-0-1 3-1-0 4-0-0 4-0-0 3-0-1 1-1-2 18-2-4 
 
Table 3: The average classification accuracy (%) with standard error of five runs of 
ELSA/EM and greedy search. The ''--'' entry indicates that no solution is found by 
ELSA/EM. The last row and column show the number of win-loss-tie cases of ELSA/EM 
compared with greedy search.  

Experiments on WPBC Data 
We also tested our algorithm on a real data set, the Wisconsin Prognostic Breast 

Cancer (WPBC) data (Mangasarian et al., 1995). This data set records 30 numeric 
features quantifying the nuclear grade of breast cancer patients at the University of 
Wisconsin Hospital, along with two traditional prognostic variables --- tumor size and 
number of positive lymph nodes. This results in a total of 32 features for each of 198 
cases. For the experiment, individuals are represented by 38 bits, 32 for the features and 6 
for K (Kmax =  8).  Other ELSA parameters are the same as those used in the previous 
experiments.     

We analyzed performance on this data set by looking for clinical relevance in the 
resulting clusters.  Specifically, we observe the actual outcome (time to recurrence, or 
known disease-free time) of the cases in the three clusters.  Figure 9 shows the survival 
characteristics of three prognostic groups found by ELSA/EM.  

The three groups showed well-separated survival characteristics.  Out of 198 
patients, 59, 54 and 85 patients belong to the good, intermediate and poor prognostic 
groups, respectively. The good prognostic group was well-differentiated from the 
intermediate group (p < 0.076) and the intermediate group was significantly different 
from the poor group (p < 0.036). Five-year recurrence rates were 12.61%, 21.26%, and 
39.85% for the patients in the three groups. The chosen dimensions by ELSA/EM 
included a mix of nuclear morphometric features such as the mean and the standard error 



of the radius, perimeter and area, and the largest value of the area and symmetry along 
three other features.   

            Figure 9: Estimated survival curves for the three groups found by ELSA/EM. 
 

We note that neither of the traditional medical prognostic factors, tumor size and 
lymph node status, is chosen. This finding is potentially important because the lymph 
node status can be determined only after lymph nodes are surgically removed from the 
patient's armpit (Street et al., 95). We further investigate whether other solutions with 
lymph node information can form three prognostic groups as good as our EM solution.  

For this purpose, we selected Pareto solutions across all different K values that 
have fewer than 10 features including lymph node information and formed three clusters 
using these selected features, disregarding the evolved value of K. The survival 
characteristics of the three prognostic groups found by the best of these solutions was 
very competitive with our chosen solution. The good prognostic group was well-
differentiated from the intermediate group (p < 0.10), and the difference between the 
intermediate group and the poor group was significant (p < 0.026). This suggests that 
lymph node status may indeed have strong prognostic effects, even though it is excluded 
from the best models evolved by our algorithms.   

Conclusions 
In this section, we presented a new ELSA/EM algorithm for unsupervised feature 

selection. Our ELSA/EM model outperforms a greedy algorithm in terms of classification 
accuracy while considering a number of possibly conflicting heuristic metrics. Most 
importantly, our model can reliably select an appropriate clustering model, including 
significant features and the number of clusters.  

In future work we would like to compare the performance of ELSA on the 
unsupervised feature selection task with other multi-objective EAs, using each in 
conjunction with clustering algorithms. Another promising future direction will be a 
direct comparison of different clustering algorithms in terms of the composition of 
selected features and prediction accuracy.   

 



FEATURE SELECTION FOR ENSEMBLES 
In this section, we propose a new meta-ensembles algorithm to directly optimize 

ensembles by creating a two-level evolutionary environment.  In particular, we employ 
feature selection not only to increase the prediction accuracy of an individual classifier 
but also to promote diversity among component classifiers in an ensemble (Opitz, 1999).  

Feature Selection and Ensembles 
Recently many researchers have combined the predictions of multiple classifiers to 

produce a better classifier, an ensemble, and often reported improved performance 
(Breiman, 1996b, Bauer and Kohavi, 1999). Bagging (Breiman, 1996a) and Boosting  
(Freund and Schapire, 1996) are the most popular methods for creating accurate 
ensembles. The effectiveness of Bagging and Boosting comes primarily from the 
diversity caused by re-sampling training examples while using the complete set of 
features to train component classifiers.   

Recently several attempts have been made to incorporate the diversity in feature 
dimension into ensemble methods. The Random Subspace Method (RSM) in  (Ho, 
1998a, Ho, 1998b) was one early algorithm that constructed an ensemble by varying the 
feature subset. RSM used C4.5 as a base classifier and randomly chose half of the 
original features to build each classifier. In (Guerra-Salcedo and Whitley, 1999), four 
different ensemble methods were paired with each of three different feature selection 
algorithms: complete, random, and genetic search. Using two table-based classification 
methods, ensembles constructed using features selected by the GA showed the best 
performance. In (Cunningham and Carney, 2000), a new entropy measure of the outputs 
of the component classifiers was used to explicitly measure the ensemble diversity and to 
produce good feature subsets for ensemble using hill-climbing search.  

Genetic Ensemble Feature Selection (GEFS) (Opitz, 1999) used a GA to search for 
possible feature subsets. GEFS starts with an initial population of classifiers built using 
up to 2 ⋅ D features, where D is the complete feature dimension. It is possible for some 
features to be selected more than once in GEFS and crossover and mutation operators are 
used to search for new feature subsets. Using 100 most-fit members with majority voting 
scheme, GEFS reported better estimated generalization than Bagging and AdaBoost on 
about two-thirds of 21 data sets tested.  Longer chromosomes, however, make GEFS 
computationally expensive in terms of memory usage (Guerra-Salcedo and Whitley, 
1999).  Further, GEFS evaluates each classifier after combining two objectives in a 
subjective manner using fitness = accuracy + λ diversity, where diversity is the average 
difference between the prediction of component classifiers and the ensemble.   

However, all these methods consider only one ensemble. We propose a new 
algorithm for ensemble feature selection, Meta-Evolutionary Ensembles (MEE), that 
considers multiple ensembles simultaneously and allows each component classifiers to 
move into the best-fit ensemble. We evaluate and reward each classifier based on two 
different criteria, accuracy and diversity. A classifier that correctly predicts data 
examples that other classifiers in the same ensemble misclassify contributes more to the 
accuracy of the ensemble to which it belongs.   

We imagine that some limited "energy" is evenly distributed among the examples in 
the data set. Each classifier is rewarded with some portion of the energy if it correctly 
predicts an example. The more classifiers that correctly classify a specific example, the 



initialize population of agents, each with energy θ/2    
while there are alive agents in Popi and i < T   
      for each ensemble g    
            for each record r in Datatest 
     prevCountg,r = countg,r;  countg,r = 0;    
            for each agent a in Popi   
     a' = mutate(crossover(a, randomMate));    
     g  = group(a);    
     train(a);    
     for each record r in Datatest    
           if (class(r) == prediction(r,a))    
   countg,r++;   ∆E = Eenvt

g,r / min(5, prevCountg,r);    
   Eenvt

g,r = Eenvt
g,r - ∆E;  Ea = Ea + ∆E;   

     Ea = Ea - Ecost;  
     if (Ea > θ)    
           insert a, a' into Popi+1;  Ea' = Ea / 2;   Ea = Ea - Ea' ;  
     else if (Ea > 0)    
           insert a into Popi+1; 
      for each ensemble g    
            replenish energy based on predictive accuracy;   
       i = i+1;   
endwhile 

less energy is rewarded to each, encouraging them to correctly predict the more difficult 
examples. The predictive accuracy of each ensemble determines the total amount of 
energy to be replenished at each generation. Finally, we select the ensemble with the 
highest accuracy as our final model. 

Meta-Evolutionary Ensembles 
Pseudocode for the Meta-Evolutionary Ensembles (MEE) algorithm is shown in 

Figure 10, and a graphical depiction of the energy allocation scheme is shown in Figure 
11.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Pseudo-code of Meta-Evolutionary Ensembles (MEE) algorithm. 
 

 
Figure 11: Graphical depiction of energy allocation in the MEE. Individual classifiers 
(small boxes in the environment) receive energy by correctly classifying test points. 
Energy for each ensemble is replenished between generations based on the accuracy of 
the ensemble. Ensembles with higher accuracy have their energy bins replenished with 
more energy per classifier, as indicated by the varying widths of the bins. 
 



Each agent (candidate solution) in the population is first initialized with randomly 
selected features, a random ensemble assignment, and an initial reservoir of energy. The 
representation of an agent consists of D + log2(G) bits. D bits correspond to the selected 
features (1 if a feature is selected, 0 otherwise). The remaining bits are a binary 
representation of the ensemble index, where G is the maximum number of ensembles. 
Mutation and crossover operators are used to explore the search space and are defined in 
the same way as in previous section.  

In each iteration of the algorithm, an agent explores a candidate solution (classifier) 
similar to itself, obtained via crossover and mutation. The agent's bit string is parsed to 
get a feature subset J.  An ANN is then trained on the projection of the data set onto J, 
and returns the predicted class labels for the test examples. The agent collects ∆E from 
each example it correctly classifies, and is taxed once with Ecost. The net energy intake of 
an agent is determined by its classification accuracy. But the energy also depends on the 
state of the environment. We have an energy source for each ensemble, divided into bins 
corresponding to each data point. For ensemble g and record index r in the test data, the 
environment keeps track of energy Eenvt

g,r and the number of agents in ensemble g, 
countg,r that correctly predict record r. The energy received by an agent for each correctly 
classified record r is given by   
 

∆E = Eenvt
g,r / min(5, prevCountg,r).                          (10) 

 
An agent receives greater reward for correctly predicting an example that most in its 

ensemble get wrong. The min function ensures that for a given point there is enough 
energy to reward at least 5 agents in the new generation. Candidate solutions receive 
energy only inasmuch as the environment has sufficient resources; if these are depleted, 
no benefits are available until the environmental resources are replenished. Thus an agent 
is rewarded with energy for its high fitness values, but also has an interest in finding 
unpopulated niches, where more energy is available. The result is a natural bias toward 
diverse solutions in the population. Ecost for any action is a constant (Ecost < θ). 

In the selection part of the algorithm, an agent compares its current energy level 
with a constant reproduction threshold θ.  If its energy is higher than θ, the agent 
reproduces: the agent and its mutated clone become part of the new population, with the 
offspring receiving half of its parent's energy.  If the energy level of an agent is positive 
but lower than θ, only that agent joins the new population.  

The environment for each ensemble is replenished with energy based on its 
predictive accuracy, as determined by majority voting with equal weight among base 
classifiers.  We sort the ensembles in ascending order of estimated accuracy and 
apportion energy in linear proportion to that accuracy, so that the most accurate ensemble 
is replenished with the greatest amount of energy per base classifier. Since the total 
amount of energy replenished also depends on the number of agents in each ensemble, it 
is possible that an ensemble with lower accuracy can be replenished with more energy in 
total than an ensemble with higher accuracy.  

Experimental Results 

Experimental Results of MEE/ANN 



We tested the performance of MEE combined with neural networks on several data 
sets that were used in (Opitz, 1999).  In our experiments, the weights and biases of the 
neural networks are initialized randomly between 0.5 and -0.5, and the number of hidden 
node is determined heuristically as the square root of inputs. The other parameters for the 
neural networks include a learning rate of 0.1 and a momentum rate of 0.9. The number 
of training epochs was kept small for computational reasons. The values for the various 
parameters are: Pr(mutation) = 1.0,  Pr(crossover) = 0.8, Ecost = 0.2, θ = 0.3, and T = 30. 
The value of Eenvt

tot = 30 is chosen to maintain a population size around 100 classifier 
agents. 

Experimental results are shown in Table 4. All computational results for MEE are 
based on the performance of the best ensemble and are averaged over five standard 10-
fold cross-validation experiments. Within the training algorithm, each ANN is trained on 
two-thirds of the training set and tested on the remaining third for energy allocation 
purposes.  We present the performance of a single neural network using the complete set 
of features as a baseline algorithm.  In the win-loss-tie results shown at the bottom of 
Table 4, a comparison is considered a tie if the intervals defined by one standard error8 of 
the mean overlap. On the data sets tested, MEE shows consistent improvement over a 
single neural network.   

 
 

Single net MEE Data sets  Avg.   S.D. 
Baggin

g AdaBoost GEFS Avg. S.D. Epochs 
Credita  84.3   0.30 86.2 84.3 86.8 86.4 0.52 40 
Creditg  71.7   0.43 75.8 74.7 75.2 75.6 0.78 50 
Diabetes  76.4   0.93 77.2 76.7 77.0 76.8 0.42 50 
Glass  57.1   2.69 66.9 68.9 69.6 61.1 1.73 100 
Cleveland  80.7   1.83 83.0 78.9 83.9 83.3 1.54 50 
Hepatitis  81.5   0.21 82.2 80.3 83.3 84.9 0.65 40 
Votes-84  95.9   0.41 95.9 94.7 95.6 96.1 0.44 40 
Hypo  93.8   0.09 93.8 93.8 94.1 93.9 0.06 50 
Ionosphere  89.3   0.85 90.8 91.7 94.6 93.5 0.81 100 
Iris  95.9   1.10 96.0 96.1 96.7 96.5 0.73 100 
Krvskp  98.8   0.63 99.2 99.7 99.3 99.3 0.10 50 
Labor  91.6   2.29 95.8 96.8 96.5 94.4 0.78 50 
Segment  92.3   0.97 94.6 96.7 96.4 93.2 0.28 50 
Sick  95.2   0.47 94.3 95.5 96.5 99.3 0.03 50 
Sonar  80.5   2.03 83.2 87.0 82.2 85.2 1.57 100 
Soybean  92.0   0.92 93.1 93.7 94.1 93.8 0.19 50 
Vehicle  74.7   0.48 79.3 80.3 81.0 76.4 1.12 50 
Win-loss-tie       15-0-2 7-4-6 9-6-2 4-7-6  

 
Table 4: Experimental results of MEE/ANN. 

 
We also include the results of Bagging, AdaBoost, and GEFS from  (Opitz, 1999) 

for indirect comparison.  In these comparisons, we did not have access to the accuracy 
results of the individual runs.  Therefore, a tie is conservatively defined as a test in which 
the one-standard-deviation interval of our test contained the point estimate of accuracy 
from (Opitz, 1999). In terms of predictive accuracy, our algorithm demonstrates better or 
equal performance compared to single neural networks, Bagging and Boosting. However, 



MEE shows slightly worse performance compared to GEFS, possibly due to the 
methodological differences. For example, it is possible that the more complex structure of 
neural networks used in GEFS can learn more difficult patterns in data sets such as Glass 
and Labor data.  

From the perspective of computational complexity, our algorithm can be very slow 
compared to Bagging and Boosting. However, MEE can be very fast compared to GEFS 
because GEFS uses twice as many as input features as used in MEE. Further, the larger 
number of hidden nodes and longer training epochs can make GEFS extremely slow.       

Guidelines Toward Optimized Ensemble Construction 
In this section, we use MEE to examine ensemble characteristics and provide some 

guidelines for building optimal ensembles. We expect that by optimizing the ensemble 
construction process, MEE will in general achieve comparable accuracy to other methods 
using fewer individuals.  We use data collected from the first fold of the first cross-
validation routine for the following analyses.    

We first investigate whether the ensemble size is positively related with the 
predictive accuracy. It has been well established that to a certain degree, the predictive 
accuracy of an ensemble improves as the number of classifiers in the ensemble increases. 
For example, our result in Figure 12 indicates that accuracy improvements flatten out at 
an ensemble size of approximately 15-25.  We also investigate whether the diversity 
among classifiers is positively related with the ensemble's classification performance.  In 
our experiments, we measured the diversity based on the difference of predicted class 
between each classifier and the ensemble.  We first define a new operator ⊕ as follows: α 
⊕ β = 0 if α = β, 1 otherwise.  When an ensemble e consists of g classifiers, the diversity 
of ensemble e, diversitye, is defined as follows: 

  
                                (11) 

 
where N is the number of records in the test data and predj

i and predj
e represent the 

predicted class label for record j by classifier i and ensemble e respectively. The larger 
the value of diversitye, the more diverse ensemble is. 

Figure 12: The relationship between the predictive accuracy and ensemble size (left), and 
between the predictive accuracy and ensemble diversity (right) with 95% confidence 
interval on the Soybean data.  We observed similar patterns on other data sets.  
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We also show the relationship between the predictive accuracy and ensemble 
diversity in Figure 12. This shows the expected the positive relationship between 
accuracy and diversity.  However, our results show that too much diversity among 
classifiers can deteriorate ensemble performance, as the final decision made by ensemble 
becomes a random guess.    
      
Conclusions 

In this section, we propose a new two-level ensemble construction algorithm, Meta-
Evolutionary Ensembles (MEE) that uses feature selection as the diversity mechanism.  
At the first level, individual classifiers compete against each other to correctly predict 
held-out examples.  Classifiers are rewarded for predicting difficult points, relative to the 
other members of their respective ensembles.  At the top level, the ensembles compete 
directly based on classification accuracy.   

Our model shows consistently improved classification performance compared to a 
single classifier at the cost of computational complexity. Compared to the traditional 
ensembles (Bagging and Boosting) and GEFS, our resulting ensemble shows comparable 
performance while maintaining a smaller ensemble. Further, our two-level evolutionary 
framework confirms that more diversity among classifiers can improve predictive 
accuracy. Up to a certain level, the ensemble size also has a positive effect on the 
ensemble performance.   

The next step is to compare this algorithm more rigorously to others on a larger 
collection of data sets, and perform any necessary performance tweaks on the EA energy 
allocation scheme. This new experiment is to test the claim that there is relatively little 
room for other ensembles algorithm to obtain further improvement over decision forest 
method  (Breiman, 1999). Along the way, we will examine the role of various 
characteristics of ensembles (size, diversity, etc.) and classifiers (type, number of 
dimensions / data points, etc.). By giving the system as many degrees of freedom as 
possible and observing the characteristics that lead to successful ensembles, we can 
directly optimize these characteristics and translate the results to a more scalable 
architecture (Street and Kim, 2001) for large-scale predictive tasks. 

CONCLUSIONS 
In this chapter, we proposed a new framework for feature selection in supervised 

and unsupervised learning.  In particular, we note that each feature subset should be 
evaluated in terms of multiple objectives.  In supervised learning, ELSA with neural 
networks model (ELSA/ANN) was used to search for possible combinations of features 
and to score customers based on the probability of buying new insurance product 
respectively.  The ELSA/ANN model showed promising results in two different 
experiments, when market managers have clear decision scenario or not.  ELSA was also 
used for unsupervised feature selection.  Our algorithm, ELSA/EM, outperforms a greedy 
algorithm in terms of classification accuracy.  Most importantly, in the proposed 
framework we can reliably select an appropriate clustering model, including significant 
features and the number of clusters.  

We also proposed a new ensemble construction algorithm, Meta-Evolutionary 
Ensembles (MEE), where feature selection is used as the diversity mechanism among 
classifiers in the ensemble.  In MEE, classifiers are rewarded for predicting difficult 



points, relative to the other members of their respective ensembles.  Our experimental 
results indicate that this method shows consistently improved performance compared to a 
single classifier and the traditional ensembles.   

One major direction of future research on the feature selection with ELSA is to find 
a way that can boost weak selection pressure of ELSA while keeping its local selection 
mechanism.  For problems requiring effective selection pressure, local selection may be 
too weak because the only selection pressure that ELSA can apply comes from the 
sharing of resources. Dynamically adjusting the local environmental structure based on 
the certain ranges of the observed fitness values over a fixed number of generations could 
be a promising solution.  In this way, we could avoid the case in which the solution with 
the worst performance can survive into the next generation because there are no other 
solutions in its local environment.  

Another major direction of future research is related with the scalability issue.  By 
minimizing the communication among agents, our local selection mechanism makes 
ELSA efficient and scalable.  However, our models suffer the inherent weakness of the 
wrapper model, the computational complexity.  Further by combining EAs with ANN to 
take the advantages of both algorithms, it is possible that the combined model can be so 
slow that it cannot provide solutions in a timely manner.  With the rapid growth of 
records and variables in database, this failure can be critical.  Combining ELSA with 
faster learning algorithms such as decision tree algorithms and Support Vector Machine 
(SVM) will be worth to pursue.    
 
                                                           
1 Continuous objective functions are discretized. 
 
2 This is one of main tasks in the 2000 CoIL challenge  (Kim et al., 2000).  For more information about 
CoIL challenges and the data sets, please refer to http://www.dcs.napier.ac.uk/coil/challenge/. 
 
3 If other objective values are equal, we prefer to choose a solution with small variance. 
 
4 This is reasonable because as we select more prospects, the expected accuracy gain will go down. If the 
marginal revenue from an additional prospect is much greater than the marginal cost, however, we could 
sacrifice the expected accuracy gain. Information on mailing cost and customer value was not available in 
this study.  
 
5 The other four features selected by the ELSA/logit model are: contribution to bicycle and fire policy, and 
number of trailer and lorry policies. 
 
6 The cases of zero or one cluster are meaningless, therefore we count the number of clusters as K = κ + 2 
where κ is the number of ones and Kmin  = 2 ≤ K  ≤ Kmax. 
 
7 For K = 2, we use Fcomplexity = 0.76, which is the closest value to 0.69 represented in the front. 
 
8 In our experiments, standard error is computed as standard deviation / iter0.5 where iter = 5. 


