Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Pattern Recognition
Letters

An official publication of the
Intemational Association for Pattern Recognition

IRPRE),

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Pattern Recognition Letters 34 (2013) 1499-1507

Pattern Recognition
Letters

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

g
. . ¥ el
journal homepage: www.elsevier.com/locate/patrec gt

Speeding up correlation search for binary data

@ CrossMark

Lian Duan®*, W. Nick Street®, Yanchi Liu?®

2 Department of Information Systems, New Jersey Institute of Technology, United States
b Department of Management Sciences, The University of lowa, United States

ARTICLE INFO ABSTRACT

Article history:
Available online 11 June 2013

Searching correlated pairs in a collection of items is essential for many problems in commercial, medical,
and scientific domains. Recently, a lot of progress has been made to speed up the search for pairs that
have a high Pearson correlation (¢-coefficient). However, ¢-coefficient is not the only or the best corre-
lation measure. In this paper, we aim at an alternative task: finding correlated pairs of any “good” corre-
lation measure which satisfies the three widely-accepted correlation properties in Section 2.1. In this
paper, we identify a 1-dimensional monotone property of the upper bound of any “good” correlation
measure, and different 2-dimensional monotone properties for different types of correlation measures.
We can either use the 2-dimensional search algorithm to retrieve correlated pairs above a certain thresh-
old, or our new token-ring algorithm to find top-k correlated pairs to prune many pairs without comput-
ing their correlations. The experimental results show that our robust algorithm can efficiently search
correlated pairs under different situations and is an order of magnitude faster than the brute-force

Communicated by A. Petrosino

Keywords:

Correlation search
Correlation upper bound
Token-ring algorithm

method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and related work

It is very important to analyze the relationship among items for
many data mining problems. For example, association analysis
(Agrawal et al., 1993) is to discover a set of binary variables (called
items) that co-occur frequently in a transaction database. Correla-
tion search is useful for sales promotions (Lin et al., 2011), website
catalog design, store shelf layout, and adverse drug effect detection
(Duan et al., 2013). No matter how the relationships are defined,
we need a proper measure to evaluate the patterns. Support and
confidence (Agrawal et al., 1993) are often used to represent the
significance. However, these can produce misleading results be-
cause of the lack of comparison to the expected probability under
the assumption of independence. To overcome this, many correla-
tion measures (Tan et al., 2004; Geng and Hamilton, 2006; Duan
and Street, 2012) have been proposed and studied.

However, as the number of items and transactions in the data-
set increases, calculating all the pair correlation values is computa-
tionally expensive. Since there is no monotone property for most of
correlation measures to help prune the search space, the brute-
force method is straightforward. When we conducted a blank
search of books in Amazon.com on Jan. 5, 2013, there were
21,735,144 paperback books available. In order to find the corre-
lated pairs of paperback books, a brute-force approach requires

* Corresponding author. Tel.: +1 973 596 5481; fax: +1 973 596 2986.
E-mail addresses: lian.duan@njit.edu (L. Duan), nick-street@uiowa.edu
(W.N. Street), yl473@njit.edu (Y. Liu).

0167-8655/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.patrec.2013.05.027

computing the correlation value of 2.36 « 10" pairs. Even worse,
when the co-occurrence of all the pairs cannot be loaded into the
memory, the IO cost for retrieving co-occurrences is much more
expensive than the computational cost for calculating correlations.

The most significant progress on correlated pair search was
made by Xiong et al. (2008, 2006). He made use of the upper bound
of the Pearson correlation coefficient (¢-coefficient) for binary
variables. The computation of this upper bound is much cheaper
than the computation of the exact correlation because this upper
bound is a function of single item supports. In addition, the upper
bound has special 1-dimensional and 2-dimensional properties
that prune many pairs from the search space without the need to
compute their actual upper bounds. The algorithm TAPER (Xiong
et al., 2006) makes use of the 1-dimensional and 2-dimensional
properties to retrieve correlated pairs above a given threshold.
The algorithm TOP-COP (Xiong et al., 2008) uses the 1-dimensional
property and a diagonal traversal method, combined with a refine-
and-filter strategy, to efficiently find the top-k pairs. However, this
work is only related to the ¢-coefficient, which is not the only or
the best correlation measure. We extend the ideas of the upper
bound, 1-dimensional and 2-dimensional properties for ¢-coeffi-
cient to any “good” correlation measures.

Given a pair {l,I;} in a dataset, the actual probability is
tp = P(I, n 1), the expected probability under the assumption of
independence is ep = P(I;) - P(I,). Since itemset mining has a long
history from 1993 when frequent itemset mining Agrawal et al.
(1993) was proposed, a lot of related concepts are proposed such
as closed itemset (Yahia et al., 2006), contrast itemset (Aggarwal

1500 L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507

et al.,, 2006), and discriminative itemset (Cheng et al., 2007). These
concepts are related to each other in a certain degree; however, in
this paper, we only focus on the performance issue and the general
framework of finding correlated pairs where the correlation mea-
sure must explicitly have the comparison to the assumption of
independence. In addition, there are several other issues related
to correlation that we also do not address here, such as effective-
ness of correlation measures, statistical type-1 and type-2 error
reduction, error-tolerant methods using sampling, and high
dimensional correlation search. In Duan and Street (2012), we
carefully studied 19 correlation measures and provided four extra
properties for correlation measures from the statistical point of
view which can help users to choose the correlation measure
retrieving results closer to human intuition. Webb (2007) proposed
a framework of reducing the type-1 and type-2 error of itemset
mining which can be applied to our pattern search framework.
Zhang et al. (2006) studied the distribution of the ¢-coefficient
and relaxed the upper bound in TAPER in order to speed up search.
We proposed a maximal fully-correlated itemset (Duan et al.,
2009) framework for high dimensional correlation search. Guns
et al. (2011) formulated the traditional itemset mining problem,
such as frequent, closed, and discriminative itemset mining, as
constraint programming problems, and then applied an existing
solver for constraint programming to speed up the search.

The rest of this paper is organized as follows. Section 2 presents
basic notions of correlation properties, correlation upper bound, 1-
dimensional and 2-dimensional properties. We propose several
methods to speed up correlated pair search in Section 3. Section
4 shows the experimental results. Finally, we draw a conclusion
in Section 5.

2. Basic properties

In this section, some basic properties of correlation are intro-
duced to better explain the improved performance of correlation
search.

2.1. Correlation measure properties

To find highly correlated pairs, we should find a good correla-
tion measure first. All the correlation measures should satisfy the
following three properties proposed by Piatetsky-Shapiro (1991).

Given an itemset S = {I, I,...,I,}, a correlation measure M
must satisfy (Piatetsky-Shapiro, 1991):

P1: Mis equal to a certain constant number C when all the items
in the itemset are statistically independent.

P2: M monotonically increases with the increase of P(S) when all
the P(I;) remain the same.

P3: M monotonically decreases with the increase of any P(I;)
when the remaining P(I;) and P(S) remain unchanged.

The first property requires a fixed reference for independence.
The last two properties are based on the following intuition. The
correlation value increases when the expected probability stays
the same while the actual probability goes up. The correlation va-
lue decreases when the expected probability goes up while the ac-
tual probability stays the same. Since it is impossible to compare
against every possible measure (Geng and Hamilton, 2006), we
use the following three commonly accepted properties to general-
ize different correlation measures, such as ¢-coefficient, the sim-
plified y?-statistic, probability ratio, leverage, and likelihood ratio
(Duan and Street, 2012). For example, leverage is calculated as
P(S) — TI,P(L), and it is easy for readers to check its satisfaction
for the above three properties. In the following sub-sections, we

will make use of the above three properties to infer correlation
upper bound properties. Interested readers can find more details
related to correlation properties in Duan and Street (2012).

2.2. Correlation upper bound for pairs

Theorem 1. Given any pair {I;,1;} and support values P(I;) for item I;
and P(l;) for item I;, the correlation upper bound CUB(I;,1;), i.e. the
highest possible correlation value of the pair {I;,1;}, is the correlation
value for {I;,I;} when P(I; nI;) = min{P(I;),P(I})}.

Proof. The Support of the itemset S, P(S) , is the proportion of
transactions that contain S. P(I; N I;) must be less or equal to P(I;).
Similarly, we have P(I; nI;) < P(I;). Therefore, the upper bound of
the support value P(I;nl) for the 2-itemset {I;,[;j} is
min{P(I;), P(I;)}. For the given P(I;) and P(l;), any correlation mea-
sure reaches its upper bound when P(I;nI;) = min{P(l;), P(l;)}
according to correlation Property 3. O

The calculation of correlation upper bound (CUB) for pairs only
needs the support of each item which can be saved in memory
even for large datasets; however, the calculation of correlation
for pairs needs the support of pairs, incurring a high 10 cost for
large datasets. Given a 2-itemset {I;,I;}, if its correlation upper
bound is lower than the correlation threshold we specify, there is
no need to retrieve the support of the 2-itemset {I;,I;}, because
the correlation value for this pair is definitely lower than the
threshold no matter what the support is. If we only retrieve the
support of a given pair in order to calculate its correlation when
its upper bound is greater than the threshold, we will save a lot
of unnecessary 10 cost when the threshold is high.

2.3. 1-Dimensional property

Although the correlation upper bound calculation can save a lot
of unnecessary IO cost, it still requires the correlation upper bound
calculation for all the possible pairs. Therefore, we make use of the
1-dimensional property to eliminate unnecessary upper bound
checks. It is motivated by the search algorithm TAPER (Xiong
et al., 2006) for the ¢-coefficient. If we sort the items according
to their supports in decreasing order as in TAPER, different mea-
sures have different monotone patterns, which we will discuss in
Section 2.4. In order to fit the same decreasing monotone pattern
for any good correlation measure, we sort the items according to
their supports in increasing order instead of decreasing order.

Theorem 2. Given a user-specified threshold 0 and an item list
{l1,I,... I} sorted by support in increasing order, the correlation
upper bound of {I;, 1} is less than 0 if the correlation upper bound of
{I;,I;} is less than 6 and i < j < k.

Proof. Since i < j < k and the item list {I;,,,...,I} is sorted by
support in increasing order, P(I;) < P(I;) < P(I). Then, the support
upper bound of both {I;,I;} and {I;, I} is equal to P(I;). For the pair
{Ii,’j}, Pupper(li N I]) = P(I,) and Pexpected(li n Ij) = P(I,)P(I]) For the
pair {li,Ik}, Puper(liNI) =P(li) and Peypectea(Ii N Ix) = P(I;})P(Iy).
Therefore, Pupper(Ii N Ix) = Pupper(Ii N1;), and Pexpecea(li N 1) =
Pexpectea(Ii N 1j) because P(Ix) > P(I;). According to correlation prop-
erty 3, we get CUB(I;,Iy) < CUB(l;, ;). Since CUB(I;,I;) <0,
CUB(I;,Iy) < 0. O

To get all the pair correlation upper bounds, we need to calcu-
late an n x n matrix for an item list sorted by support as shown in
Table 1(a). Since this matrix is symmetrical, we only need to calcu-
late the upper part above the diagonal. If the data set contains n
items, (n — 1) branches (rows) need to be calculated. The pairs in

L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507 1501

o —
o
2
1o} = © -
— S @
= Qo
- :
Eo_ 2
z ..g
€ ~
]
3w | o
o - 53
> kel
e}
T o |
< © -
e}
il
T T T T T T T T T T T T
9.0 9.1 9.2 9.3 9.4 9.5 9.6 25 3.0 35 4.0 45
log(Threshold) log(Threshold)
(a) Netflix (b) Retail
Fig. 1. The number of correlated pairs under different likelihood ratio thresholds.
0
—_ — A
8 8 -
S o <
ge E
o
<] S
@ @
Q e}
£ o | E ©
g = 2 €
1) 1)
£ £
g 8 <o
rsy e
o -

log(Threshold)
(a) The number of candidates for Netflix

® —e— 1-D search
—&— 2-D search
~ -
7 o -
@
£
E v
jo2)
kel
< 4
o
~ 4
T T T T T T
7.0 7.5 8.0 8.5 9.0 9.5
log(Threshold)

(¢) The runtime for Netflix

log(Threshold)

(b) The number of candidates for Retail

© - —e— 1-D search
—4— 2-D search
9]
£
=)
S
Ke]
o -
~ 4
T T T T
5.0 55 6.0 6.5
log(Threshold)

(d) The runtime for Retail

Fig. 2. The number of candidates and the runtime under different thresholds.

branch i are {I;,;} where i+ 1 < j < n. The reference item I; is fixed
in each branch i and it has the minimum support value due to the
way we construct the branch. Since items in each branch are also
sorted based on their support in increasing order, the correlation
upper bound of {I;, I;} monotonically decreases with the increase
of j by Theorem 2. In other words, CUB(I;,I;) <60 when
CUB(I;,I;)) <0andj+1 <k <n.

2.4. 2-Dimensional property

When the threshold is low, we might still calculate a lot of cor-
relation upper bounds by using the 1-dimensional property. In or-
der to avoid too many correlation upper bound checks, we try to
check the upper bound change in both horizontal and vertical
dimensions. However, different correlation measures have differ-

1502 L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507

ent 2-dimensional properties and require different search
strategies.

Given three items I;, I;, and I, with P(I;) > P(I;) > P(Iy), the cor-
relation measure M is.

o Type 1 if CUB(I;,I;) > CUB(, Iy).
o Type 2 if CUB(I;,I;) < CUB(I, Iy).
o Type 3if CUB(I,,I}) = CUB(I,,I;()

The simplified y2-statistic, ¢-coefficient, and likelihood ratio are
type 1 correlation measures. Although we know of no existing type
2 correlation measure, we can construct a type 2 correlation mea-
sure which satisfies all the three correlation properties like

. +/P(Iinl;)—P(I;)*P(I; a1s o N
Correlationgype, = %&’;(’) Probability ratio is a type 3 corre-

lation measure. For different types of correlation measures, we
get different 2-dimensional properties. For type 1 correlation mea-
sures, the upper bound value decreases from left to right and from
bottom to top. If the upper bound of the current cell {I;,];} is below
6, then CUB(I,,1;) < 6 when 1 < p <iandj < q < n. For type 2 cor-
relation measures, the upper bound value decreases from left to
right and from top to bottom. If the upper bound of the current cell
{I;,I;} is below 0, then CUB(I,,I;) <60 when i<p<n-1 and
max(p + 1,j) < q < n. For type 3 correlation measures, the right-
most column has the lowest upper bound value. If the upper bound
of the current cell {I;,I;} is below 6, then the upper bounds of any
cell to its right is below 0.

3. Search algorithm

In general, there are two types of correlated pair searches: (1)
correlated pairs above a certain threshold, and (2) top-k correlated
pairs. Although the correlation itself does not have a monotone
property to help prune, the correlation upper bound does. Conse-
quently, we make use of the 1-dimensional monotone property
of the upper bound of any good correlation measure, and different
2-dimensional monotone properties for different types of correla-
tion measures. We can either use the 2-dimensional search algo-
rithm to retrieve correlated pairs above a certain threshold, or
our new token-ring algorithm to find the top-k correlated pairs,
to prune many pairs without the need to compute their
correlations.

3.1. Correlated pairs above a certain threshold

In this subsection, we focus on task 1: finding correlated pairs
above a certain threshold. The easiest way of speeding up search
is calculating the upper bound before the real correlation. If the
upper bound is already below the threshold, there is no need to
retrieve the pair support to calculate the real correlation. There-
fore, we greatly reduce IO cost for high thresholds. Upper bound
checking needs to calculate the upper bound of all the possible
n-(n—1)/2 pairs which is still computationally expensive. The
1-dimensional property can be used to save a lot of unnecessary
upper bound checks for very high thresholds. We specify the ref-
erence item A and start a search within each branch. The refer-
ence item A is fixed in each branch and it has the minimum
support value due to the way we construct the branch. Items
in each branch are also sorted based on their support in increas-
ing order. By Theorem 2, the correlation upper bound of {A,B}
monotonically decreases with the increase of the support of item
B. Therefore, if we find the first item B, the turning point, which
results in an correlation upper bound less than the user-specified
threshold, we can stop the search for the current branch. If the
upper bound is greater than the user-specified threshold, we

calculate the exact correlation and check whether this pair is
really satisfied. Furthermore, the 2-dimensional property can be
used to prune cells faster. The key difference between 1-dimen-
sional search and 2-dimensional search is that the 2-dimensional
search algorithm records the turning point in the previous
branch and starts computing from that point instead of the
beginning of the current branch. But we will use different search
sequences for three different types of correlation measures. For
type 1 correlation measures, we start the search from the
upper-left corner. If the upper bound of the current cell is above
the threshold 0, we will check the cell to the right of it; else we
will instead check the cell under it. For type 2 correlation mea-
sures, we start the search from the upper-right corner. If the
upper bound of the current cell is greater than 0, we check the
cell below the current cell; else, we check the cell to the left
of the current cell. For type 3 correlation measures, the right-
most column has the lowest upper bound value. We only need
to search the first branch. If the current column is above the
threshold, we continue the search of the right-side column until
the current column is below the threshold.

Theorem 3. The number of upper bound calculations in the 2-
dimensional search is between n—1 and 2n — 3 for the first type,
n — 1 for the second type, and between 1 and n — 1 for the third type.

Proof. For the 2-dimensional search in type 1, the number of cal-
culations is determined by the cell where we stop on the right
most column. If the algorithm stops at the upper-right corner,
the whole search moves from left to right n — 1 times. If the algo-
rithm stops at the lower-right corner, the whole search moves
from left to right n — 1 times and from up to down n — 2 times,
so there are n—1+n -2 = 2n — 3 movements. Since the search
might stop at any cell on the most right column, the calculation
for type 1 is between n — 1 and 2n — 3.

For the second type, the search starts at the upper-right corner
and stops at one of the border cells along the diagonal, that is, cell
Cii.1 wherei=1,2 ... ,n— 1. From the upper-right corner cell C ,
to the cell C;;, 1, we have to make i movements from up to down
and n — i — 1 movements from right to left. In all, we need to make
i+n—i—1=n-1 movements no matter in which cell we stop
the search. For the third type, we stop the search between the
calculation for the first column and that of the last column, so the
number of calculation is between 1 and n—-1. O

Different methods of facilitating correlated pair search above a
certain threshold are discussed in this section. If we do not make
use of correlation upper bound at all, we need to calculate the cor-
relation for all the possible pairs to find correlated pairs above a
threshold. This brute-force method will have n(n — 1)/2 support
10 cost and n(n — 1)/2 correlation calculations. Here, we call a pair
a candidate if its correlation upper bound is greater than the user-
specified threshold 0. For a given dataset and 0, the number of can-
didates, o, is fixed. For each candidate, we have to calculate its true
correlation to determine whether its correlation is above the
threshold or not. No matter which method we use, the 10 cost of
retrieving support and the computing cost of correlation for o can-
didates are inevitable. The only difference is the number of corre-
lation upper bound checks. If it is just upper bound calculation,
n(n —1)/2 upper bounds need to be calculated. If it is 1-dimen-
sional search, « plus an extra g upper bounds need to be calculated
where B is between 0 and n—1 depending on in how many
branches we check all the cells. If it is 2-dimensional search, y upper
bounds need to be calculated which is between n — 1 and 2n — 3 for
type 1, n — 1 for type 2, and between 1 and n — 1 for type 3.

L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507 1503

Here, we further study the difference between 1-dimensional
and 2-dimensional search. If we want to find correlated pairs above
a given threshold, « 10 cost and correlation calculation is inevitable
because each candidate must be checked. The difference is that 1-
dimensional has o+ 8 upper bound calculations and 2-dimen-
sional has y upper bound calculations. Since o is much greater than
B and 7, and 10 is much more expensive than calculation, the o 10
cost dominates the computational cost. There is no significant dif-
ference between 1-dimensional and 2-dimensional search with re-
gard to finding pairs above a threshold. However, it is hard to
determine which threshold is proper for a given dataset. Normally,
this threshold is determined by intuition. But we can use the num-
ber of candidates for the given threshold to do the evaluation. For
example, we may know how much time we spend on retrieving
support and calculating correlation for a pair and how long we
are allowed to search. We can estimate how many candidates we
can afford to search. When just finding the number of candidates,
we can avoid the o support IO cost and « correlation calculation. In
this case, 2-dimensional search can find the number of candidates
in linear time which is much better than 1-dimensional search.

3.2. Top-k correlated pairs

Although 2-dimensional search can efficiently find correlated
pairs above the threshold 0, it is hard for users to provide a proper
correlation threshold in many applications. Instead, finding top-k
correlated pairs is more meaningful for users.

3.2.1. TOP-COP search

The original TOP-COP algorithm (Xiong et al., 2008) introduced
a diagonal traversal method for efficiently searching the top-k cor-
related pairs of ¢-coefficient. While it exploits the 2-dimensional
monotone property of the upper bound of the ¢-coefficient, it
needs O(n?) space to save pair status indicating whether or not
the pair needs to be checked. Saving pair status only takes 3% of
the space of saving support, but it is still not feasible for large
datasets. If items are sorted by their support in increasing order,
the upper bound of pairs for any good correlation measure de-
creases from left to right for each row. The search starts from
the diagonal consisting of {I;, ;.1 } which is the closest to the main
diagonal, then goes to the diagonal consisting of {I;,I;.»} which is
the second closest to the main diagonal, and so on. During the
iterative search process, this method maintains a top-k list and
a pair is pushed into this list if its correlation coefficient is greater
than the current minimum correlation coefficient in the top-k list.
The search stops if the maximal upper bound of all the pairs in a
diagonal is less than the current minimum correlation coefficient
in the top-k list.

3.2.2. Token-ring search

TOP-COP calculates all the pairs in a diagonal to find the maxi-
mal upper bound. In fact, the upper bound calculation of some
pairs in the diagonal can be avoided if the upper bound of their left
pair is already less than the current minimum correlation
coefficient 7 in the top-k list. In order to achieve that, we propose
a token-ring search algorithm, shown in Algorithm 1. We treat all
the n — 1 branches as nodes in the token-ring. Only the branch that
gets the token can calculate the upper bound of the leftmost uncal-
culated pair in this branch and compare its upper bound against 7.
If the upper bound is above 7, we will check the correlation value of
this pair. This pair will be pushed into this list if its correlation
coefficient is greater than 7. If the upper bound is below t, this
branch will be removed from the token-ring because the upper
bounds of the uncalculated pairs in this branch must be less than
T according to the 1-dimensional property. In addition, a branch
will also be removed from the token-ring if all the pairs in this

branch are calculated. The algorithm will stop when there is no
branch in the token-ring. According to the way token-ring search
works, the upper bound of all the pruned pairs must be less than
the current minimum correlation coefficient in the top-k list, so
the current top-k list contains the pairs with the k highest correla-
tion values in the data set. The token-ring algorithm only saves the
status of n — 1 branches while TOP-COP needs O(n?) space to save
pair status.

Algorithm 1. Token-ring search

Main: TokenRing (SortList, k)
for i = 0; i < SortList.length — 1; i+ + do
BranchInformation[O]=i; //save the id of the branch
that have potential candidates
BranchInformation|[1]=i + 1; //save the leftmost
uncalculated pair id in this branch
LivingBranch.add (BranchInformation);
end for
for i = 0; i < SortList.length — 1; i + + do
/[We at most search the whole LivingBranch (n — 1) times
CurrentCorrelationThreshold = 0;
for j = 0; j < LivingBranch.length; j+ + do
Set the CurrentPair as the leftmost uncalculated
pair in LivingBranch.get (j)
CurrentCorrelationUpperbound =
getPairCorrelationUpperbound (CurrentPair)
Change the leftmost uncalculated pair id in
LivingBranch.get (j)
if CurrentCorrelationUpperbound>Current
CorrelationThreshold then
if LivingBranch.get (j) has no uncalculated pair then
LivingBranch.remove (j);
end if
CurrentCorrelation = getPairCorrelation (CurrentPair);
if CurrentCorrelation>CurrentCorrelationThreshold
then
Push CurrentPair into the top-k array;
kth-correlation = the correlation of the kth pair
in the current top-k array;
if kth-correlation>CurrentCorrelationThreshold then
CurrentCorrelationThreshold = kth-correlation;
end if
end if
else
LivingBranch.remove (j);
=
end if
end for
if LivingBranch.isEmpty () then
break; //No branch has the potential candidates.
end if
end for

We coined a data set with 6 items. The correlation upper
bounds and correlations of all the pairs are shown in Table 1(a)
and tab:cubp(b) respectively. An example of the token-ring search
for the top-5 pairs in this data set is shown as follows. After trav-
eling the first diagonal from {I;,I,} to {Is,Is}, all the five pairs are
pushed into the top-5 list, and the current minimum correlation
coefficient in the top-5 list is 15. Since the current 7 = 15 is less
than the maximal upper bound in the current diagonal 49, we
continue the search. When checking {Iy,Is}, the upper bound 14

L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507

«~ —e— Upper bound search
- —4— 1-D search
—%— 2-Dsearch
= 2 4
5 -
9]
£
L
& ®
© -
A T T T T
5.0 55 6.0 6.5
log(Threshold)
(b) Retail

Fig. 3. The runtime for retrieving the satisfied pairs.

1504
@
—e— Upper bound search
—4— 1-Dsearch
—*— 2-D search
o
z
O —
£
£
=3
e}
29 |
o 4
T T T T T T
7.0 75 8.0 8.5 9.0 9.5
log(Threshold)
(a) Netflix
©
o
?
()
©
T ©
o 2
E 3
=z —e— Upper bound by TOP-COP
15 —A— Upper bound by Token-Ring
2 g —%— Correlation Computed
o T 4
&
o —
-
8 T T T T T
10 20 30 40 50

(a) Netflix

N~
o
b
T
o
o
o) -
Ko}
€
3~
= I] —e— Upper bound by TOP-COP
3 2 —4— Upper bound by Token-Ring
o - —»— Correlation Computed
o M
o
o -
3 T T T T T
10 20 30 40 50
k

(b) Retail

Fig. 4. The number of correlation and correlation upper bound checks.

is less than the current minimum correlation coefficient in the
top-5 list 15, so the first branch quits the token-ring. The upper
bound of {I, 14} is 23 which is greater than 15, but its correlation
is less than 15. Therefore, the second branch stays in the token-
ring and the current top-5 list is not changed. A similar thing hap-
pens to {Is,Is}. After checking {l4, I}, the current minimum corre-
lation coefficient in the top-5 list is 20 and the maximal upper
bound in the current diagonal is 31. Therefore, we continue the
search in the third diagonal. Branch 1 is already pruned, so
{I,14} would not be checked. We only check {I,,Is} and {I3,Is}.
After traveling the third diagonal, the current minimum correla-
tion coefficient in the top-5 list is 20 and the maximal upper
bound in the current diagonal is 19. Finally, we stop the search
at cell {Is,Is}.

Theorem 4. Both TOP-COP and token-ring calculate the same number
of correlations. The only performance difference between TOP-COP and
token-ring is that token-ring reduces the number of correlation upper
bound computations.

Proof. The correlation upper bound check for the cell {I;,I;;;} in
the ith branch and the jth diagonal line can be avoided if the cor-
relation upper bound of the cell {I;,l;,; 1} in the ith branch and
the (j — 1)th diagonal line is below the minimum correlation coef-
ficient in the top-k list at that time. Therefore, token-ring avoids

Table 1
A coined example.
I I I Iy Is Is

(a) Correlation upper bound
I 15 14 13 8 5
I 36 23 14 9
I3 48 31 19
Iy 49 31
Is 45
Is
(b) Correlation
I 15 14 3 -2 1
I 36 3 12 0
I3 48 2 10
Iy 36 29
Is 20
Is

the upper bound checks of TOP-COP for those pairs that cannot
affect the current top-k list, but the current top-k list changes
at the same cells for both token-ring and TOP-COP. In all, both
TOP-COP and token-ring calculate the same number of correla-
tions, but they check a different number of correlation upper
bounds.

L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507 1505

Theorem 5. For the token-ring algorithm, the difference between the
number of computed correlation upper bounds and the number of
computed correlations is no more than n — 1.

Proof. For the token-ring algorithm, there are n — 1 branches at
the beginning. If the ith branch is pruned because all the pairs in
this branch are calculated, we calculate the same number of upper
bounds as correlations. If the ith branch is pruned because the
upper bound is lower than the current minimum correlation coef-
ficient in the top-k list, we calculate one more upper bound than
correlations for this branch. Therefore, the difference between
the number of computed correlation upper bounds and the num-
ber of computed correlations is no more thann —1. O

3.3. Combination of two tasks

Although the 2-dimensional search algorithm can efficiently
find correlated pairs above a given threshold, it is difficult for users
to provide an appropriate correlation threshold in real-world
applications since different data sets have different characteristics.
Instead, we try to find the top-k correlated pairs. However, when
using the token-ring algorithm to find the top-k correlated pairs,
we could spend a lot of time on calculation and end up with trivial
results in a data set that does not contain strong positive correla-
tions. Therefore, we propose a user procedure to combine 2-
dimensional search and token-ring search which can stop search-
ing wisely on its way finding the top-k correlated pairs when there
are few strong positive correlations in the data set.

Before we try to find the correlated pairs, we can calculate the
number of candidates for a given threshold and use this number
to estimate the time we will spend. For example, if we hope the
algorithm is completed in one day and the time for processing
one candidate is 20 ms, then we should choose the threshold under
which the number of candidates is less than 4 million. Due to the
existence of 2-dimensional search, we can get the number of can-
didates for any threshold in the linear time O(n). We can choose
the lowest threshold 0,,;, under which the number of candidates
is less than 4 million, and then search the correlated pairs by using
2-dimensional search. The advantage is that the algorithm will
stop on time if the data set contains few strong positive correla-
tions. However, there are two disadvantages. First, we might re-
trieve too many pairs and we are only interested in the top-k
correlated pairs. Second, we will definitely spend one day to search
the correlated pairs, while we might only need to spend one hour
to find the top-k correlated pairs by using the token-ring algo-
rithm. Instead of searching the correlated pairs above 6,,;, by the
2-dimensional search algorithm, we integrate the threshold 6,
into the token-ring algorithm. We treat all the n — 1 branches as
nodes in the token-ring. Only the branch which gets the token
can calculate the upper bound of the leftmost uncalculated pair
in this branch and compare its upper bound against the value
Y = max{Omin, T} where 7 is the current minimum correlation coef-
ficient in the top-k list. If the upper bound is above v, we will check
the correlation value of this pair. This pair will be pushed into this
list if its correlation coefficient is greater than y. If the upper bound
is below , this branch will be removed from the token-ring. The
algorithm will stop when there is no node in the token-ring. In that
way, even if the current minimum correlation coefficient 7 in the
top-k list never exceeds the threshold 0., the algorithm will pro-
cess all the candidates under the threshold 0,,;, which would not
cost more than the maximal time we allow. It stops searching wi-
sely on its way to find the top-k correlated pairs when there are
few strong positive correlations in the data set. If there are a lot
of strong positive correlations in the data set, the algorithm will

find the top-k list and stop. For example, if we try to find the
top-5 pairs and set up the threshold 40 in the coined data set
shown in Table 1(a) and tab:cubp(b), the search sequence is as fol-
lows: {I1,}, {I.,1}, {I5,14}, {ls,Is}, {Is,Is}, {I5,Is}, and {l4,I¢}.
We end up with the only strong pair {I5,14}.

4. Experiments

The efficiency performance of our methods was tested on sev-
eral real-life datasets. Since the results were similar for all the data-
sets, we only present results on two typical datasets. The first is the
Netflix data set which contains 17,770 movies and 480,000 transac-
tions. The second is a retail data set from the FIMI repository con-
taining 16,470 items and 88,000 transactions. Netflix contains
many correlated patterns because of movies in the same series
and TV shows of many episodes, while the retail data set contains
fewer correlated patterns because those highly correlated items
might be already offered by manufactures as a package. Since the
pattern of all the correlation measures are similar to each other,
we only show the result of likelihood ratio due to the limitation
of the pages. The number of correlated pairs under different thresh-
olds for these two data sets is shown in Fig. 1. We transformed both
x-axis and y-axis into the log scale, and it is easy to see that the
number of correlated pairs and the likelihood ratio threshold follow
a power-law distribution. We implemented our algorithm using
Java 1.6.0 on a Dell workstation with 2.4 GHz Dual CPU and 4G
memory running on the Vista operating system. In the following,
we will check the performance improvement from each algorithm.

4.1. Finding correlated pairs above a certain threshold

Here, we focus on task 1 of correlated pair search: finding cor-
related pairs above a given threshold 6.

4.1.1. Count the number of pair candidates

Before we determine the threshold to search the satisfied pairs,
we can count how many pairs’ CUBs are above a tentative thresh-
old. This number can help us to estimate the time we will spend on
the satisfied pair search because the support of the pair needs to be
retrieved if its CUB is above the threshold. The number of candi-
dates and the time spent on counting candidates under different
thresholds are shown in Fig. 2. The number of candidate for differ-
ent thresholds is transformed to the log-log scale and roughly fol-
lows a power-law distribution. To get the number of pair
candidates, 2-dimensional search is linear and 1-dimensional
search is exponential with the threshold. When the threshold is
0, the 1-dimensional search will check all the pairs. Therefore,
the runtime of 1-dimensional search with threshold 0 is equal to
the runtime of the upper bound calculation method. The 1-dimen-
sional search takes less time than the upper bound calculation
method when the threshold is high, but the 2-dimensional search
is always an order of magnitude faster than the just upper bound
calculation method.

4.1.2. Search the satisfied pairs

Since the 10 cost for calculating correlation of pairs is much
higher than the time cost for calculating CUB, the CUB calculation
can save a lot of unnecessary 10 cost when the threshold is high.
The log runtime of retrieving the satisfied pairs by calculating
CUB first given different log correlation thresholds is shown in
Fig. 3. The 1-dimensional and 2-dimensional search are almost
identical. The runtime of the CUB, 1-dimensional, and 2-dimen-
sional search all decreases drastically as we increase the threshold.
Both 1-dimensional and 2-dimensional search take much less
time than the CUB search when the threshold is high because

1506 L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507

1-dimensional and 2-dimensional search take less time to find the
pairs whose CUB is higher than the threshold. For the dataset with
less correlations, the correlation upper bound check for high
thresholds dominates the calculation. In that case, the speed-up
of 1-dimensional and 2-dimensional search comparing to the
CUB search is more obvious like in the retail dataset. However,
the CUB, 1-dimensional, and 2-dimensional search do not make
too much difference when the threshold is low.

4.2. Finding top-k correlated pairs

For finding the top-k correlated pairs, the runtime of the brute-
force method is determined by the number of correlations we need
to compute, while the runtime of TOP-COP or token-ring is deter-
mined by the number of correlations and the number of CUBs we
need to compute. The brute-force method will calculate the corre-
lation of all the possible pairs which is not feasible for large data-
sets. According to Theorem 4, token-ring computes fewer CUBs
than TOP-COP, but computes the same number of correlations.
Therefore, the runtime difference between token-ring and TOP-
COP is determined by the difference between the number of CUB
calculations. The number of correlation calculations and
CUB calculations under different k is shown in Fig. 4. According

50000
|

—e— TOP-COP
—A— Token-Ring

Time(s)
30000
]

to Theorem 5, the number of correlation calculations is almost
equal to that of CUB calculations in the token-ring algorithm which
is verified in Fig. 4. Token-ring can save a huge number of unnec-
essary CUB checks compared to TOP-COP. The runtime of TOP-
COP and token-ring for top-k correlated pairs is shown in Fig. 5.
When the IO cost of retrieving pair support is much more expen-
sive than the CUB calculation for a dense dataset like Netflix, the
total runtime is dominated by the time spent on correlation calcu-
lation and there is little difference between token-ring and TOP-
COP. When the IO cost is not that expensive compared to the
CUB calculation for a sparse dataset like retail, we can see token-
ring took significantly less time than TOP-COP. Besides reducing
a large amount of memory usage, token-ring is significantly faster
than TOP-COP where the gap between the true correlation and the
correlation upper bound is large.

The top-k search method is more flexible for finding the desired
patterns compared to the 2-dimensional method. Assuming we can
get the top-k pair correlation ahead of time and use it to search the
top-k pairs with the 2-dimensional method, Fig. 6 shows the num-
ber of correlation calculations using 2-dimensional search and
those using our top-k search method. The gap between the
2-dimensional method and the top-k search method is not huge
and the gap gradually increases with the k. The top-k search

o

o

S

wn
- g
& S —e— TOP-COP
g - —A— Token-Ring
E

o

S |

o

w

o

T T T
10 20 30 40 50

k

(b) Retail

Fig. 5. The runtime for top-k algorithms.

o
o
S
e
o -
T T T T T
10 20 30 40 50
k
(a) Netflix
[Te]
o
?
]
2
Yo}
o
? 4
jod
[sp)
o}
€ w
(=]
Z %
=
c
>
s}
O u
(=)
? 4
@
- —e— TOP-k
—4— 2 dimensional search
o
(=]
?
jo
IS T T T T T
10 20 30 40 50
k

(a) Netflix

o
o
o
S |
o
')
N

s 8

2 g

S 3

=z 2

o

c

> -

3

(@)
o
o
S 4 —— TOP-k
B —&— 2 dimensional search
o 4

T T T T
10 20 30 40 50

k
(b) Retail

Fig. 6. Correlation checks for top-k search and threshold search.

L. Duan et al./ Pattern Recognition Letters 34 (2013) 1499-1507 1507

method is more flexible and does not require much more time than
the threshold search method.

4.3. Combination of two tasks

We proposed a user procedure to combine the 2-dimensional
search algorithm and the token-ring algorithm to reconcile the
two tasks of searching for pairs above a certain threshold and for
top-k pairs. The performance of the user procedure really depends
on the parameters we set. If the threshold 0 is so high that the kth
correlation in the dataset is less than 6, the runtime is equal to the
1-dimensional search under the threshold 6 because the modified
token-ring checks the same number of correlations and the same
number of CUBs as the 1-dimensional search algorithm. If k is
small and the data set contains many strong positive correlations,
the runtime is close to the original token-ring algorithm. From Figs.
3 and 5, we can estimate the runtime of the modified token-ring
for different parameters. For example, when the threshold 0 is
1000 and k is 10 in Netflix, the runtime will be close to 18,000 s.

5. Conclusions

We made several significant progresses on correlated pair
search in the paper. First, we propose a framework to search corre-
lated pairs for any “good” correlation measure. Second, a new to-
ken-ring algorithm is proposed for the top-k search. Comparing
to the state of art TOP-COP algorithm, our token-ring algorithm re-
duces a large amount of memory usage and is significantly faster
when the gap between the true correlation and the correlation
upper bound is large. Third, we propose a user procedure to com-
bine the correlated pair search above a certain threshold and the
top-k search. The combination is more robust for the threshold
specification and avoids the situation of spending too much time
to get trivial results in a data set that does not contain too many
strong positive correlations. The experimental results show that
our robust algorithm can efficiently search correlated pairs under

different situations and is an order of magnitude faster than the
brute-force method.

References

Aggarwal, C.C., Pei,]., Zhang, B., 2006. On privacy preservation against adversarial
data mining. In: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD'06. ACM, New York, NY, USA,
pp. 510-516.

Agrawal, R., Imielifiski, T., Swami, A., 1993. Mining association rules between sets of
items in large databases. In: SIGMOD’93: Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM, New York, NY, USA, pp.
207-216.

Cheng, H., Yan, X., Han, J., Hsu, C.-W., 2007. Discriminative frequent pattern analysis
for effective classification. In: ICDE'07, pp. 716-725.

Duan, L., Khoshneshin, M., Street, W.N.,, Liu, M., 2013. Adverse drug effect detection.
IEEE Journal of Biomedical and Health Informatics (in press).

Duan, L., Street, W.N., 2009. Finding maximal fully-correlated itemsets in large
databases. In: ICDM’09: Proceedings of the International Conference on Data
Mining, Miami, FL, USA, pp. 770-775.

Duan, L., Street, W.N., 2012. Selecting the right correlation measure for binary data.
<http://papers.ssrn.com/sol3/papers.cfm?abstractid=2035491>.

Geng, L., Hamilton, H.J., 2006. Interestingness measures for data mining: a survey.
ACM Computing Surveys 38 (3), 9.

Guns, T., Nijssen, S., De Raedt, L., 2011. Itemset mining: a constraint programming
perspective. Artificial Intelligence 175, 1951-1983.

Lin, K-H., Chiu, Y.-S., Chen,].-S., 2011. An adaptive correlation-based group
recommendation system. In: 2011 International Symposium on Intelligent
Signal Processing and Communications Systems (ISPACS), pp. 1-5.

Piatetsky-Shapiro, G., 1991. Discovery Analysis and Presentation of Strong Rules.
AAAI/MIT Press.

Tan, P.-N., Kumar, V., Srivastava, J., 2004. Selecting the right objective measure for
association analysis. Information Systems 29 (4), 293-313.

Webb, G.I., 2007. Discovering significant patterns. Machine Learning 68, 1-33.

Xiong, H., Shekhar, S., Tan, P.-N., Kumar, V., 2006. TAPER: a two-step approach for
all-strong-pairs correlation query in large databases. IEEE Transaction on
Knowledge and Data Engineering 18 (4), 493-508.

Xiong, H., Zhou, W., Brodie, M., Ma, S., 2008. Top-k ¢ correlation computation.
INFORMS Journal on Computing 20 (4), 539-552.

Yahia, S.B., Hamrouni, T., Nguifo, E.M., 2006. Frequent closed itemset based
algorithms: a thorough structural and analytical survey. SIGKDD Exploration
Newsletter 8, 93-104.

Zhang, J., Feigenbaum, J., 2006. Finding highly correlated pairs efficiently with
powerful pruning. In: CIKM'06: Proceedings of the ACM CIKM International
Conference on Information and Knowledge Management. ACM, New York, NY,
USA, pp. 152-161.

